[1] LYU Wen-tao, DAI Kai-yan, WU Long, et al. Runway detection in SAR images based on fusion sparse representation and semantic spatial matching[J]. IEEE Access, 2018, 6: 27984-27992.
[2] LIU Neng-yuan, CAO Zong-jie, CUI Zong-yong, et al. Multi-layer abstraction saliency for airport detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9820-9831.
[3] 艾淑芳,闫钧华,李大雷,等.遥感图像中的机场跑道检测算法[J].电光与控制,2017,24(2):43-46.
AI Shu-fang, YAN Jun-hua, LI Da-lei, et al. An algorithm for detecting the airport runway in remote sensing image[J]. Electronics Optics and Control, 2019, 24(2): 43-46.(in Chinese)
[4] BUDAK Ü, HALICI U,220;R A, et al. Efficient airport detection using line segment detector and fisher vector representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1079-1083.
[5] LIU Neng-yuan, CUI Zong-yong, CAO Zong-jie, et al. Airport detection in large-scale SAR images via line segment grouping and saliency analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 434-438.
[6] CHEN Fen, REN Rui-long, DE VOORDE T V, et al. Fast automatic airport detection in remote sensing images using convolutional neural networks[J]. Remote Sensing, 2018, 10(3): 1-20.
[7] ZHANG Peng, NIU Xin, DOU Yong, et al.Airport detection on optical satellite images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1183-1187.
[8] XU Yue-lei, ZHU Ming-ming, LI Shuai, et al. End-to-end airport detection in remote sensing images combining cascade region proposal networks and multi-threshold detection networks[J]. Remote Sensing, 2018, 10(10): 1-17.
[9] ZHU Dan, WANG Bin, ZHANG Li-ming. Airport target
detection in remote sensing images: a new method based on two-way saliency[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1096-1100.
[10] TANG Ge-fu, XIAO Zhi-feng, LIU Qing, et al. A novel airport detection method via line segment classification and texture classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2408-2412.
[11] ZHANG Zhe, ZOU Can, HAN Ping, et al. A runway detection method based on classification using optimized polarimetric features and HOG features for PolSAR images[J]. IEEE Access, 2020, 8: 49160-49168.
[12] 韩 萍,常 玲,程 争,等.基于h/q分解和贝叶斯迭代分类的跑道检测算法[J].系统工程与电子技术,2016,38(9):2048-2054.
HAN Ping, CHANG Ling, CHENG Zheng, et al. Runway detection based on h/q decomposition and iterative Bayesian classification[J]. Systems Engineering and Electronics, 2016, 38(9): 2048-2054.(in Chinese)
[13] 黄远程,宋博文.形态学重建与Canny结合实现机场跑道边界检测[J].遥感信息,2016,31(6):75-82.
HUANG Yuan-cheng, SONG Bo-wen. A two step method based on morphology reconstruction and canny operator for runway edge detection[J]. Remote Sensing Information, 2016, 31(6): 75-82.(in Chinese)
[14] 倪维平,严卫东,吴俊政,等.应用图像方向和宽度谱检测机场跑道[J].红外与激光工程,2014,43(11):3655-3662.
NI Wei-ping, YAN Wei-dong, WU Jun-zheng, et al. Detection of airport runway based on the orientation and width spectrums of images[J]. Infrared and Laser Engineering, 2014, 43(11): 3655-3662.(in Chinese)
[15] HAN Ping, CHENG Zheng, CHANG Ling. Automatic runway detection based on unsupervised classification in polsar image[C]∥IEEE. 16th Integrated Communications, Navigation, and Surveillance Conference. New York: IEEE, 2016: 6E3-1-8.
[16] 晋瑞锦,周 伟,杨 健.大场景下的极化SAR机场检测[J].清华大学学报(自然科学版),2014,54(12):1588-1593.
JIN Rui-jin, ZHOU Wei, YANG Jian. Airport automatic detection in large-scale polarimetric SAR image[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(12): 1588-1593.(in Chinese)
[17] 卢晓光,蔺泽山,韩 萍,等.自适应无监督分类的PolSAR图像机场跑道区域快速检测[J].遥感学报,2019,23(6):1186-1193.
LU Xiao-guang, LIN Ze-shan, HAN Ping, et al. Fast detection of airport runways in PolSAR images based on adaptive unsupervised classification[J]. Journal of Remote Sensing, 2019, 23(6): 1186-1193.(in Chinese)
[18] 韩 萍,徐建飒,赵爱军.基于多级分类的PolSAR图像机场跑道检测[J].系统工程与电子技术,2014,36(5):866-871.
HAN Ping, XU Jian-sa, ZHAO Ai-jun. PolSAR image runways detection based on multi-stage classification[J]. Systems Engineering and Electronics, 2014, 36(5): 866-871.(in Chinese)
[19] 张立平,张 红,王 超,等.大场景高分辨率SAR图像中机场快速检测方法[J].中国图像图形学报,2010,15(7):1112-1120.
ZHANG Li-ping, ZHANG Hong, WANG Chao, et al. A fast method of airport detection in large scale SAR image with high resolution[J]. Journal of Image and Graphics, 2010, 15(7): 1112-1120.(in Chinese)
[20] FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
[21] MAURYA H, CHAUHAN A, PANIGRAHI R K. A fast alternative to three- and four-component scattering models for polarimetric SAR image decomposition[J]. Remote Sensing Letters, 2017, 8(8): 781-790.
[22] LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258.
[23] JIAO Li-cheng, LIU Fang. Wishart deep stacking network for fast PolSAR image classification[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3273-3286.
[24] CHEN Shi-qiang, GUO Sheng-long, LI Yang, et al. Unsupervised classification for hybrid polarimetric SAR data based on scattering mechanisms and Wishart classifier[J]. Electronics Letters, 2018, 54(23): 1355-1355.
[25] GADHIYA T, ROY A K. Optimized Wishart network for an efficient classification of multifrequency PolSAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1720-1724.
[26] LIU Chi, LIAO Wen-zhi, LI Heng-chao, et al. Unsupervised classification of multilook polarimetric SAR data using spatially variant Wishart mixture model with double constraints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5600-5613.
[27] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281.
[28] CSILLIK O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels[J]. Remote Sensing, 2017, 9(3): 243-261.
[29] XU Qiao, CHEN Qi-hao, YANG Shuai, et al. Superpixel-based classification using K distribution and spatial context for polarimetric SAR images[J]. Remote Sensing, 2016, 8(8): 619-640.
[30] 陈 强,蒋咏梅,陆 军,等.基于目标散射相似性的POLSAR图像无监督地物散射分类新方案[J].电子学报,2010,38(12):2729-2734.
CHEN Qiang, JIANG Yong-mei, LU Jun, et al. A new scheme of unsupervised terrain classification for PolSAR imagery based on target scattering similarities[J]. Acta Electronica Sinica, 2010, 38(12): 2729-2734.(in Chinese)