|Table of Contents|

Safety evaluation and action mechanism of frost heave with local water storage in shallow tunnel(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2020年03期
Page:
40-50
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Safety evaluation and action mechanism of frost heave with local water storage in shallow tunnel
Author(s):
WANG Dao-yuan12 YUAN Jin-xiu2 ZHU Yong-quan1 LUAN Yong-jun3 CUI Hai-long3 CUI Guang-yao4
(1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China; 2. Department of Civil Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050091, Hebei, China; 3. Hebei Construction Group Corporation Limited,Baoding 071000, Hebei, China; 4. School of Civil Engineering, North China University of Technology, Beijing 100144, China)
Keywords:
tunnel engineering local water storage frost heave action mechanism safety evaluation numerical calculation model test
PACS:
U455.43
DOI:
10.19818/j.cnki.1671-1637.2020.03.003
Abstract:
To reveal the action mechanism of frost heave with local water storage and put forward the effective safety evaluation method of lining structure in cold region tunnels, the three-dimensional geomechanical model test was designed. By setting three different frost heave test conditions with different water accumulation ranges, the crack development and stress of lining structure were observed during the frost heave. The numerical calculation method of frost heave with local water storage was improved. The numerical model of frost heave based on the rock mechanics method and coupled with the frost heaving force and surrounding rock load was established. Under different locations, thicknesses and ranges of water storage, the change laws of tunnel frost heaving force and structural internal force were compared. The influence mechanism of frost heave with local water storage on the stress of tunnel was further revealed, and the safety of lining structure was evaluated. Analysis result shows that the frost heave with local water storage has significant regional characteristics, and the frost heave cracking of lining occurs at the junction between the local water storage and the non water storage, the magnitude of frost heave depends on the stress concentration effect caused by the frost heave at the junction. The lining cracks are mostly longitudinal and oblique. The most disadvantageous positions of local water storage frost heave of lining are the arch foot, side wall, invert arch, waist and vault from the best to the worst. The stress of lining increases with the increase of local water storage thickness. The stress of lining tends to be uniform with the increase of local water storage area. Under the conditions of frost heave with local water storage in different parts, the allowable pressure stress ratios of lining structure are less than 1, meeting the requirements of code. The allowable tensile stress ratios of vault, arch waist and invert are greater than 1, not meeting the requirements of code. In the actual project, the appropriate measures should be taken to prevent the frost heave in the above parts. The revealed action mechanism of frost heave with local water storage and the established safety evaluation method of lining structure can provide a certain theoretical basis for the prevention and control of tunnel frost damage in cold areas. 5 tabs, 12 figs, 33 refs.

References:

[1] JUN K J, HWANG Y C, YUAN C Y. Field measurement of temperature inside tunnel in winter inGangwon, Korea[J]. Cold Regions Science and Technology, 2017, 143: 32-42.
[2] WANG Tao, ZHOU Guo-qing, WANG Jian-zhou, et al.
Stochastic analysis of uncertainty mechanical characteristics for surrounding rock and lining in cold region tunnels[J]. Cold Region Science and Technology, 2018, 145: 160-168.
[3] ZHANG Ming-yi, PEI Wan-sheng, LAI Yuan-ming, et al. Numerical study of the thermal characteristics of a shallow tunnel section with a two-phase closed thermosyphon group in a permafrost region under climate warming[J]. International Journal of Heat and Mass Transfer, 2017, 104: 952-963.
[4] CHEN Jian-xun, DENG Xiang-hui, LUO Yan-bin, et al.
Investigation of microstructural damage in shotcrete under a freeze-thaw environment[J]. Construction and Building Materials, 2015, 83: 275-282.
[5] LAI Jin-xing, QIU Jun-liang, FAN Hao-bo, et al. Freeze-proof method and test verification of a cold region tunnel employing electric heat tracing[J]. Tunnelling and Underground Space Technology, 2016, 60: 56-65.
[6] ZHANG Guo-zhu, LIU Song-yu, ZHAO Xu, et al. The
coupling effect of ventilation and groundwater flow on the thermal performance of tunnel lining GHEs[J]. Applied Thermal Engineering, 2017, 112: 595-605.
[7] ZENG Yan-hua, LIU Ke-lin, ZHOU Xiao-han, et al. Tunnel temperature fields analysis under the couple effect of convection-conduction cold regions[J]. Applied Thermal Engineering, 2017, 36(11): 2241-2250.
[8] 陈建勋.隧道冻害防治技术的研究[D].西安:长安大学,2004.
CHEN Jian-xun. Research on the prevention of frost damage in tunnels[D]. Xi'an: Chang'an University, 2004.(in Chinese)
[9] 王余富.寒区公路隧道温度场特征研究[D].西安:长安大学,2006.
WANG Yu-fu. Research on the temperature field of tunnel built in cold area[D]. Xi'an: Chang'an University, 2006.(in Chinese)
[10] 孙文昊.寒区特长公路隧道抗防冻对策研究[D].成都:西南交通大学,2005.
SUN Wen-hao. Study on frostresisting and antifreezing strategies of extra-long highway tunnel in cold area[D]. Chengdu: Southwest Jiaotong University, 2005.(in Chinese)
[11] 吴楚钢.新疆天山地区高速公路隧道防冻技术研究[D].重庆:重庆交通大学,2010.
WU Chu-gang. Study on anti-freezing technology of highway tunnel in Xinjiang Tianshan Area[D]. Chongqing: Chongqing Jiaotong University, 2010.(in Chinese)
[12] 叶秀玺.寒区隧道冻害防治技术研究[D].西安:长安大学,2010.
YE Xiu-xi. Research on technique of preventing frost damage in tunnel at cold area[D]. Xi'an: Chang'an University, 2010.(in Chinese)
[13] 张玉伟,赖金星,邱军领,等.寒区隧道冻胀效应测试与分析[J].交通运输工程学报,2018,18(3):64-73.
ZHANG Yu-wei, LAI Jin-xing, QIU Jun-ling, et al. Test and analysis on frost heaven effects of cold region tunnel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 64-73.(in Chinese)
[14] 陈建勋,罗彦斌.寒冷地区隧道温度场的变化规律[J].交通运输工程学报,2008,8(2):44-48.
CHEN Jian-xun, LUO Yan-bin. Changing rules of temperature field for tunnel in cold area[J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 44-48.(in Chinese)
[15] 汪双杰,熊 丽,张 驰,等.多年冻土区公路病害模糊专家预测方法[J].交通运输工程学报,2016,16(4):112-121.
WANG Shuang-jie, XIONG Li, ZHANG Chi, et al. Fuzzy expert prediction method for highway diseases in permafrost region[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 112-121.(in Chinese)
[16] 陈建勋,罗彦斌.寒冷地区隧道防冻隔温层厚度计算方法[J].交通运输工程学报,2007,7(2):76-79.
CHEN Jian-xun, LUO Yan-bin. Calculation method of antifreezing layer thickness in cold region tunnel[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2): 76-79.(in Chinese)
[17] 李岩松,陈寿根.寒区非圆形隧道冻胀力的解析解[J].力学学报,2020,52(1):196-207.
LI Yan-song, CHEN Shou-gen. Analytical solution of frost heaving force in non-circular cold region tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 196-207.(in Chinese)
[18] 韩跃杰,富志鹏,李博融.多年冻土区隧道传热模型及温度场分布规律[J].中国公路学报,2019,32(7):136-145.
HAN Yue-jie, FU Zhi-peng, LI Bo-rong. Heat transfer model and temperature field distribution law of tunnel in permafrost region[J]. China Journal of Highway and Transport, 2019, 32(7): 136-145.(in Chinese)
[19] 王亚琼,张 雷,王志丰,等.在役隧道衬砌渗漏水引排技术[J].现代隧道技术,2019,56(2):24-29.
WANG Ya-qiong, ZHANG Lei, WANG Zhi-feng, et al. Seepage drainage techniques for the tunnel lining in service[J]. Modern Tunnelling Technology, 2019, 56(2): 24-29.(in Chinese)
[20] 袁金秀,王道远,马海龙.季节性冻土区隧道保温层御寒保温技术研究[J].铁道标准设计,2018,62(8):100-105.
YUAN Jin-xiu, WANG Dao-yuan, MA Hai-long. Study on thermal insulation technology of insulation layer of tunnels in seasonal frozen soil area[J]. Railway Standard Design, 2018, 62(8): 100-105.(in Chinese)
[21] 赖远明,吴紫汪,朱元林,等.寒区隧道冻胀力的黏弹性解析解[J].铁道学报,1999,21(6):70-74.
LAI Yuan-ming, WU Zi-wang, ZHU Yuan-lin, et al. Analytical viscoelastic solution for frost force of cold regional tunnels[J]. Journal of the China Railway Society, 1999, 21(6): 70-74.(in Chinese)
[22] 张德华,王梦恕,谭忠盛,等.风火山隧道围岩冻胀对支护结构体系的影响[J].岩土工程学报,2003,25(5):571-573.
ZHANG De-hua, WANG Meng-shu, TAN Zhong-sheng, et al. Effect of frost heaving on tunnel supporting systems of Fenghuoshan Railway Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 571-573.(in Chinese)
[23] 张祉道,王 联.高海拔及严寒地区隧道防冻设计探讨[J].现代隧道技术,2004,41(3):1-6.
ZHANG Zhi-dao, WANG Lian. Discussion on the design of tunnels in high elevation and bitter cold region[J]. Modern Tunnelling Technology, 2004, 41(3): 1-6.(in Chinese)
[24] 张玉伟,谢永利,李又云,等.基于温度场时空分布特征的寒区隧道冻胀模型[J].岩土力学,2018,39(5):1625-1632.
ZHANG Yu-wei, XIE Yong-li, LI You-yun, et al. A frost heave model based on space-time distribution of temperature field in cold region tunnels[J]. Rock and Soil Mechanics, 2018, 39(5): 1625-1632.(in Chinese)
[25] 王建宇,胡元芳.隧道衬砌冻胀压力问题初探[J].铁道工程学报,2004(1):87-93.
WANG Jian-yu, HU Yuan-fang. A discussion on frost heave force acting on tunnel lining[J]. Journal of Railway Engineering Society, 2004(1): 87-93.(in Chinese)
[26] 范 磊,曾艳华,何 川,等.寒区硬岩隧道冻胀力的量值及分布规律[J].中国铁道科学,2007,28(1):44-49.
FAN Lei, ZENG Yan-hua, HE Chuan, et al. Magnitude and distribution of frost heave force for cold region strong rock tunnels[J]. China Railway Science, 2007, 28(1): 44-49.(in Chinese)
[27] 邓 刚,王建宇,郑金龙.寒区隧道冻胀压力的约束冻胀模型[J].中国公路学报,2010,23(1):81-86.
DENG Gang, WANG Jian-yu, ZHENG Jin-long. Model of constraint on deformation due to frost heave for tunnels in cold region[J]. China Journal of Highway and Transport, 2010, 23(1): 81-86.(in Chinese)
[28] 仇文革,孙 兵.寒区破碎岩体隧道冻胀力室内对比试验研究[J].冰川冻土,2010,32(3):557-561.
QIU Wen-ge, SUN Bing. Model test study of frost heaving pressures in tunnels excavated in fractured rock mass in cold regions[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 557-561.(in Chinese)
[29] 黄继辉,夏才初,韩常领,等.寒区公路隧道冻胀力荷载的分布形式和简化计算方法[J].现代隧道技术,2016,53(10):63-70.
HUANG Ji-hui, XIA Cai-chu, HAN Chang-ling, et al. Distribution form and simplified calculation method of frost heave load of highway tunnel in cold region[J]. Modern Tunnelling Technology, 2016, 53(10): 63-70.(in Chinese)
[30] 渠孟飞,谢 强,胡 熠,等.寒区隧道衬砌冻胀力室内模型试验研究[J].岩石力学与工程学报,2015,34(9):1894-1900.
QU Meng-fei, XIE Qiang, HU Yi, et al. Model test on frost heaving force of tunnel lining in cold region[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1894-1900.(in Chinese)
[31] 王亚伟,郑佳艳.公路隧道衬砌背后空洞积水冻胀的力学简化模型研究及误差分析[J].隧道建设,2018,38(增1):104-109.
WANG Ya-wei, ZHANG Jia-yan. Study of simplified mechanical models of frost-heaving of water behind highway tunnel lining and its error analysis[J]. Tunnel Construction, 2018, 38(S1): 104-109.(in Chinese)
[32] 韩常领,姚红志,董长松.多年冻土区公路隧道围岩荷载计算方法[J].中国公路学报,2015,28(12):114-119.
HAN Chang-ling, YAO Hong-zhi, DONG Chang-song. Calculation methods for supporting load of highway tunnels in permafrost regions[J]. China Journal of Highway and Transport, 2015, 28(12): 114-119.(in Chinese)
[33] 姚红志,张晓旭,董长松.多年冻土区公路隧道融化圈计算方法[J].交通运输工程学报,2016,16(4):141-150.
YAO Hong-zhi, ZHANG Xiao-xu, DONG Chang-song. Calculation method of thawing circle for highway tunnel in permafrost regions[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 141-150.(in Chinese)

Memo

Memo:
-
Last Update: 2020-07-10