|Table of Contents|

Research progress on wheel polygons of rail vehicles(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2020年01期
Page:
102-119
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Research progress on wheel polygons of rail vehicles
Author(s):
ZHU Hai-yan1 HU Hua-tao1 YIN Bi-chao1 WU Ping-bo2 ZENG Jing2 XIAO Qian1
(1. School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China; 2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
Keywords:
vehicle engineering high-speed train wheel polygon dynamics influence mechanism
PACS:
U270.11
DOI:
10.19818/j.cnki.1671-1637.2020.01.008
Abstract:
Aiming at the problem of wheel polygons common to rail vehicles, the effects of wheel polygons on the dynamics performance of rail vehicles were described from the aspects of rail vehicle stability, curve passing ability, and stability, and the impact of wheel polygons on the vehicle-track system components was evaluated from the perspective of fatigue life.The formation mechanism of wheel polygon was classified based on the research of wheel-axle and track structural characteristics, wheel-rail dynamic effect, wheel materials and processing technology. The existing methods of wheel polygon detection and control were summarized by summarizing the influence of wheel polygons and their causes. The research prospects of wheel polygons were proposed to provide a reference for the subsequent research on wheel polygons. Research result shows that the wheel polygon will threaten the stability of vehicle system, reduce the curve passing performance and vehicle stability, affect the passengers' comfort, and cause resonance fatigue damage to vehicle-track components. The wheel-axle resonance is one of the causes of low-speed vehicle wheel polygons. The response of rails under the external excitation and local modes are also necessarily related to the formation of wheel polygons. The wheel-rail friction vibration is generally applicable to explain the generation of wheel polygons for all rail vehicles. The wheel's own material characteristics and manufacturing repair process are also potential factors to reduce the wheel polygon phenomenon. Dynamic and static detections are one of the methods to deal with the wheel polygon phenomenon. In addition, the wheel polygon phenomenon can be controlled by optimizing the structure of vehicle-track system, strengthening the wheel production process, and timely correcting the roundness of wheel tread. Wheel repair is still the most direct means to deal with the wheel polygon, and the repair process should be improved. 1 tab, 13 figs, 97 refs.

References:

[1] 张 新,李向国,王海云,等.轨距不平顺激励下高速列车动力响应研究[J].石家庄铁道大学学报(自然科学版),2011,24(1):69-72,77. ZHANG Xin, LI Xiang-guo, WANG Hai-yun, et al. Study on dynamic response of high speed train excited by irregularity of rail gauge[J]. Journal of Shijiazhuang Tiedao University(Natural Science), 2011, 24(1): 69-72, 77.(in Chinese)
[2] 王忆佳.车轮踏面伤损对高速列车动力学行为的影响[D].成都:西南交通大学,2014. WANG Yi-jia. Effect of wheel tread damage on dynamic behaviour of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2014.(in Chinese)
[3] KAPER H P. Wheel corrugation on Netherlands railways (NS): origin and effects of “polygonization” in particular[J]. Journal of Sound and Vibration, 1988, 120(2): 267-274.
[4] 金学松,吴 越,梁树林,等.车轮非圆化磨耗问题研究进展[J].西南交通大学学报,2018,53(1):1-14. JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14.(in Chinese)
[5] 金天贺,刘志明,任尊松,等.高速列车减振器组合阻尼特性效应研究[J].华南理工大学学报(自然科学版),2018,46(9):116-124. JIN Tian-he, LIU Zhi-ming, REN Zun-song, et al. Study of combination damping characteristics effect of high-speed train damper[J]. Journal of South China University of Technology(Natural Science Edition), 2018, 46(9): 116-124.(in Chinese)
[6] 李 艳,张卫华,池茂儒,等.车轮踏面外形及轮径差对车辆动力学性能的影响[J].铁道学报,2010,32(1):104-108. LI Yan, ZHANG Wei-hua, CHI Mao-ru, et al. Influence of wheel tread profile and rolling diameter difference on dynamic performance of vehicles[J]. Journal of the China Railway Society, 2010, 32(1): 104-108.(in Chinese)
[7] 黄照伟,崔大宾,杜 星,等.车轮偏磨对高速列车直线运行性能的影响[J].铁道学报,2013,35(2):14-20. HUANG Zhao-wei, CUI Da-bin, DU Xing, et al. Influence of deviated wear of wheel on performance of high-speed train running on straight tracks[J]. Journal of the China Railway Society, 2013, 35(2): 14-20.(in Chinese)
[8] 袁雨青.高速列车车轮不圆机理及影响研究[D].北京:北京交通大学,2016. YUAN Yu-qing. Study on the mechanism and influence of the wheel out-of-round of high speed train[D]. Beijing: Beijing Jiaotong University, 2016.(in Chinese)
[9] 宋 颖.高速车轮失圆对轮轨动力作用的影响及其监测方法研究[D].北京:北京交通大学,2010. SONG Ying. Study on influence of out-of-round high-speed railway wheels on wheel/rail interaction force and monitoring method[D]. Beijing: Beijing Jiaotong University, 2010.(in Chinese)
[10] 张雪珊,肖新标,金学松.高速车轮椭圆化问题及其对车辆横向稳定性的影响[J].机械工程学报,2008,44(3):50-56. ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influence of high speed railway wheels ovalization on vehicle lateral stability[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 50-56.(in Chinese)
[11] 张雪珊,肖新标,金学松.高速车轮椭圆化对车辆系统行为的影响[J].机械工程学报,2010,46(16):67-73. ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Effect of ovalization of high speed railway wheels on vehicle dynamic performance[J]. Journal of Mechanical Engineering, 2010, 46(16): 67-73.(in Chinese)
[12] 邓永果.车轮非圆化对高速车辆系统动力学性能旳影响[D].成都:西南交通大学,2014. DENG Yong-guo. Effect of out-of-round wheel on vehicle system dynamics behavior[D]. Chengdu: Southwest Jiaotong University, 2014.(in Chinese)
[13] 王志臣,宋 颖,杜彦良.基于仿真的铁路车轮不圆度安全限值研究[J].石家庄铁道大学学报(自然科学版),2014,27(2):61-65. WANG Zhi-chen, SONG Ying, DU Yan-liang.Safety management of out-of-round wheel profiles of high-speed railway based on ADAMS/rail simulation[J]. Journal of Shijiazhuang Tiedao University(Natural Science), 2014, 27(2): 61-65.(in Chinese)
[14] 刘 韦.轮对纵向振动及其对车轮踏面磨耗的影响研究[D].成都:西南交通大学,2016. LIU Wei. The study of wheelset longitudinal vibration and its influences on wheel tread wear[D]. Chengdu: Southwest Jiaotong University, 2016.(in Chinese)
[15] 刘 韦,马卫华,罗世辉,等.考虑轮对弹性的车轮振动及车轮多边形对轮轨力影响研究[J].铁道学报,2013,35(6):28-34. LIU Wei, MA Wei-hua, LUO Shi-hui, et al.Research on influence of wheel vibration and wheel polygonization on wheel-rail force in consideration of wheelset elasticity[J]. Journal of the China Railway Society, 2013, 35(6): 28-34.(in Chinese)
[16] 崔大宾,梁树林,宋春元,等.高速车轮非圆化现象及其对轮轨行为的影响[J].机械工程学报,2013,49(18):8-16. CUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out of round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 49(18): 8-16.(in Chinese)
[17] 王 平,张荣鹤,陈嘉胤,等.高速铁路列车车轮多边形化对道岔区动力学性能的影响[J].机械工程学报,2018,54(4):47-56. WANG Ping, ZHANG Rong-he, CHEN Jia-yin, et al. Influence of polygonal wheels in high-speed trains on dynamic performance of turnout[J]. Journal of Mechanical Engineering, 2018, 54(4): 47-56.(in Chinese)
[18] 李贵宇.基于轨道振动的车轮多边形机理研究[D].成都:西南交通大学,2016. LI Gui-yu. Study on the form reason of wheel polygonization based on track vibration[D]. Chengdu: Southwest Jiaotong University, 2016.(in Chinese)
[19] 吴 磊,钟硕乔,金学松,等.车轮多边形化对车辆运行安全性能的影响[J].交通运输工程学报,2011,11(3):47-54. WU Lei, ZHONG Shuo-qiao, JIN Xue-song, et al. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-54.(in Chinese)
[20] 方翁武,刘 韦,罗世辉,等.轮对多边形对车辆动力学性能的影响[J].机车电传动,2013(4):59-62. FANG Weng-wu, LIU Wei, LUO Shi-hui, et al. Influence of wheel polygonization on vehicles dynamics[J]. Electric Drive for Locomotives, 2013(4): 59-62.(in Chinese)
[21] 雷晓燕,刘林芽,圣小珍.轮轨噪声预测与控制方法综述[J].城市轨道交通研究,2005(1):45-49. LEI Xiao-yan, LIU Lin-ya, SHENG Xiao-zhen. Prediction and control of wheel/rail noise[J]. Urban Mass Transit, 2005(1): 45-49.(in Chinese)
[22] 王 远,佟 岩.高速动车组车轮多边形对车内噪声的影响[J].噪声与振动控制,2018,38(1):147-150. WANG Yuan, TONG Yan. Influence of polygonal wheels on interior noise of high-speed trains[J]. Noise and Vibration Control, 2018, 38(1): 147-150.(in Chinese)
[23] 金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展[J].铁道学报,2001,23(2):92-108. JIN Xue-song, SHEN Zhi-yun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23(2): 92-108.(in Chinese)
[24] BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Journal of Rail and Rapid Transit, 2005, 219(3): 157-175.
[25] 罗 仁,曾 京,邬平波,等.高速列车车轮不圆顺磨耗仿真及分析[J].铁道学报,2010,32(5):30-35. LUO Ren, ZENG Jing, WU Ping-bo, et al.Simulation and analysis of wheel out-of-roundness wear of high-speed train[J]. Journal of the China Railway Society, 2010, 32(5): 30-35.(in Chinese)
[26] 韩光旭.高速列车车轮非圆化对振动噪声的影响及演变规律研究[D].成都:西南交通大学,2015. HAN Guang-xu. Influence of wheel's out-of-round on vibration and noise and their evolution based on high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2015.(in Chinese)
[27] 韩光旭,张 捷,肖新标,等.高速动车组车内异常振动噪声特性与车轮非圆化关系研究[J].机械工程学报,2014,50(22):113-121. HAN Guang-xu, ZHANG Jie, XIAO Xin-biao, et al. Study on high-speed train abnormal interior vibration and noise related to wheel roughness[J]. Journal of Mechanical Engineering, 2014, 50(22): 113-121.(in Chinese)
[28] 韩光旭,温泽峰,张 捷,等.车轮非圆化对高速列车振动噪声的影响[J].噪声与振动控制,2014,34(4):10-13,23. HAN Guang-xu, WEN Ze-feng, ZHANG Jie, et al. Influence of out-of-roundness of wheels of high-speed trains on interior vibration and noise[J]. Noise and Vibration Control, 2014, 34(4): 10-13, 23.(in Chinese)
[29] ZHANG Jie, HAN Guang-xu, XIAO Xin-biao, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University—Science A(Applied Physics and Engineering), 2014, 15(12): 1002-1018.
[30] 韩铁礼,贾尚帅,吴 越,等.车轮高阶多边形磨耗对高速列车转向架区域噪声影响研究[J].噪声与振动控制,2019,39(3):88-91,127. HAN Tie-li, JIA Shang-shuai, WU Yue, et al. Effect of high-order wheel polygonal wear on the noise of bogie area of high speed trains[J]. Noise and Vibration Control, 2019, 39(3): 88-91, 127.(in Chinese)
[31] 温士明,李 伟,朱强强,等.地铁车轮多边形磨损对浮置板轨道振动特性的影响[J].噪声与振动控制,2018,38(4):116-122. WEN Shi-ming, LI Wei, ZHU Qiang-qiang, et al. Influence of polygonal wear of metro wheels on vibration characteristics of floating slab tracks[J]. Nosie and Vibration Control, 2018, 38(4): 116-122.(in Chinese)
[32] 周素霞,李福胜,谢基龙,等.基于损伤容限的动车组车轴实测载荷谱等效应力评价[J].机械工程学报,2015,51(8):131-136. ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136.(in Chinese)
[33] 李广全,刘志明,呙如兵,等.高速列车齿轮箱应力响应与疲劳损伤评估[J].交通运输工程学报,2018,18(1):79-88. LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al.Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88.(in Chinese)
[34] 罗光兵.高速客车车轮不圆对车辆振动影响的分析[J].铁路计算机运用,2017,26(7):74-77,83. LUO Guang-bing. Analysis on influence of wheel non circle of high speed passenger train for vehicle vibration[J]. Railway Computer Application, 2017, 26(7): 74-77, 83.(in Chinese)
[35] 宋志坤,岳仁法,胡晓依,等.车轮多边形对车辆振动及轮轨力的影响[J].北京交通大学学报,2017,41(6):88-93. SONG Zhi-kun, YUE Ren-fa, HU Xiao-yi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 88-93.(in Chinese )
[36] 彭来先,韩 健,初东博,等.高速动车组垂向止挡异常振动特性及成因分析[J].机械工程学报,2019,55(12):121-127. PENG Lai-xian, HAN Jian, CHU Dong-bo, et al. Analysis of abnormal vibration characteristics and causes of vertical block in high-speed EMU[J]. Journal of Mechanical Engineering, 2019, 55(12): 121-127.(in Chinese)
[37] 戚潇月,宋冬利,张卫华.车轮多边形对车辆动力学的影响分析及在线诊断方法研究[J].铁道机车车辆,2018,38(4):10-17. QI Xiao-yue, SONG Dong-li, ZHANG Wei-hua. Analysis influence of wheel polyonalization on vehicle dynamics and research on online diagnosis[J]. Railway Locomotive and Car, 2018, 38(4): 10-17.(in Chinese)
[38] 张 旗,杨 超,董孝卿,等.车轮多边形对动力学性能影响研究[J].铁道机车车辆,2017,37(3):58-60. ZHANG Qi, YANG Chao, DONG Xiao-qing, et al. Research on influence of wheel polygon on dynamic performance[J]. Railway Locomative and Car, 2017, 37(3): 58-60.(in Chinese)
[39] 刘 佳,韩 健,肖新标,等.高速车轮非圆化磨耗对轴箱端盖异常振动影响初探[J].机械工程学报,2017,53(20):98-105. LIU Jia, HAN Jian, XIAO Xin-biao, et al. Influence of wheel non-circular wear on axle box cover abnormal vibration in high-speed train[J]. Journal of Mechanical Engineering, 2017, 53(20): 98-105.(in Chinese)
[40] 钱 卿.武广高铁车轮多边形综合整治研究[J].铁道机车车辆,2019,39(2):50-54. QIAN Qing. Study on wheel polygon comprehensive improvement of Wuguang High-speed Line[J]. Railway Locomotive and Car, 2019, 39(2): 50-54.(in Chinese)
[41] 邹航宇,张卫华,王志伟.车轮多边形化对高速列车齿轮箱体动态响应的影响[J].机车电传动,2017(6):52-56. ZOU Hang-yu, ZHANG Wei-hua, WANG Zhi-wei. Influence of wheel polygonization on dynamic response of gearbox housing of high-speed train[J]. Electric Drive for Locomotives, 2017(6): 52-56.(in Chinese)
[42] 王宏谋.某型动车组制动盘异常振动分析及缓解措施研究[J].铁道机车车辆,2019,39(4):52-54,72. WANG Hong-mou. Analysis and study on abnormal vibration of braking disc of EMU[J]. Railway Locomotive and Car, 2019, 39(4): 52-54, 72.(in Chinese)
[43] 陈 伟,戴焕云,罗 仁.高速列车车轮高阶多边形对车辆动力学性能的影响[J].铁道车辆,2014,52(12):4-8. CHEN Wei, DAI Huan-yun, LUO Ren. Effect of high order polygons of wheels for high speed trains on dynamics performance of vehicles[J]. Rolling Stock, 2014, 52(12): 4-8.(in Chinese)
[44] 吴 越,韩 健,刘 佳,等.高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J].机械工程学报,2018,54(4):37-46. WU Yue, HAN Jian, LIU Jia, et al.Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46.(in Chinese)
[45] CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914-1-9.
[46] BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442.
[47] MEYWERK M. Polygonalizaiton of railway wheels[J]. Archive of Applied Mechanics, 1999, 69(2): 102-120.
[48] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978.
[49] MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986.
[50] JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834.
[51] 李 伟,李言义,张雄飞,等.地铁车辆车轮多边形的机理分析[J].机械工程学报,2013,49(18):17-22. LI Wei, LI Yan-yi, ZHANG Xiong-fei, et al.Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22.(in Chinese)
[52] 杨晓璇.A型地铁车辆车轮多边形形成机理初步研究[D]. 成都:西南交通大学,2018. YANG Xiao-xuan. Preliminary study on mechanism of wheel polygon of type A metro vehicle[J].Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[53] TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899.
[54] PENG Bo, IWNICKI S, SHACKETON P, et al. The influence of wheelset flexibility on polygonal wear of locomotive wheels[J]. Wear, 2019, 432/433: 102917-1-11.
[55] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J].Vehicle System Dynamics, 2005, 43(8): 539-559.
[56] 李大地,戴焕云.基于钢轨模态振动的车轮高阶多边形频率特性研究[J].铁道机车车辆,2017,37(4):6-11. LI Da-di, DAI Huan-yun. Research on wheel polygonization frequencies based on modal analysis of rail[J]. Railway Locomotive and Car, 2017, 37(4): 6-11.(in Chinese)
[57] 李大地.基于钢轨模态振动的车轮多边形机理研究[D].成都:西南交通大学,2017. LI Da-di. Mechanism study of wheel polygonization based on modal analysis of rail[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[58] WU Yue, DU Xing, ZHANG He-ji, et al. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train[J]. Journal of Zhejiang University—Science A(Applied Physics and Engineering), 2017, 18(8): 579-592.
[59] WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14.
[60] DEKKER H. Vibrational resonances of nonrigid vehicles: polygonization and ripple patterns[J]. Applied Mathematical Modelling, 2009, 33(3): 1349-1355.
[61] MEYWERK M. Polygonalization of railway wheels[J]. Archive of Applied Mechanics, 1999, 69(2): 105-120.
[62] 陈光雄,金学松,邬平波,等.车轮多边形磨耗机理的有限元研究[J].铁道学报,2011,33(1):14-18. CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al.Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18.(in Chinese)
[63] 王 科.基于摩擦自激振动引起高速列车车轮多边形磨耗的仿真研究[D].成都:西南交通大学,2017. WANG Ke. A numerical simulation of wheel polygonization of high-speed trains based on friction-induced vibration[J]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[64] 周殿买,杨集友,徐 彬.动车组车轮多边形机理分析[J].城市轨道交通研究,2017(1):25-27,37. ZHOU Dian-mai, YANG Ji-you, XU Bin. Analysis of EMU wheel polygonization mechanism[J]. Urban Mass Transit, 2017(1): 25-27, 37.(in Chinese)
[65] 马卫华,罗世辉,宋荣荣.地铁车辆车轮多边形化形成原因分析[J].机械工程学报,2012,48(24):106-111. MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engeering, 2012, 48(24): 106-111.(in Chinese)
[66] 付 彬.地铁车辆车轮多边形形成机理探究[D].成都:西南交通大学,2017. FU Bin. Study into mechanism of wheel polygonalization of metro vehicle[J]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[67] 袁雨青,李 强,杨 光.横向振动对列车车轮多边形磨耗的影响[J].北京交通大学学报,2016,40(1):80-85. YUAN Yu-qing, LI Qiang, YANG Guang. Influence of lateral vibration on wheel polygonization[J]. Journal of Beijing Jiaotong University, 2016, 40(1): 80-85.(in Chinese)
[68] ZHAO Xiao-nan, CHEN Guang-xiong, LYU Jin-zhou, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827.
[69] NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels—a literature survey[J]. Journal of Rail and Rapid Transit, 2000, 214(2): 79-91.
[70] NIELSEN J C O, LUNDEN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1-3): 3-54.
[71] 宋春元,沈文林,李晓峰,等.高速动车组车轮多边形影响因素及抑制措施研究[J].中国铁路,2017(11):33-40. SONG Chun-yuan, SHEN Wen-lin, LI Xiao-feng, et al. On the influencing factors and inhibiting measures of wheel polygons of high-speed EMUs[J]. China Railway, 2017(11): 33-40.(in Chinese)
[72] 沈文林,宋春元,李国栋,等.高速动车组车轮硬度与车轮多边形形成关系及解决措施研究[J].铁道机车车辆,2018,38(4):18-23. SHEN Wen-lin, SONG Chun-yuan, LI Guo-dong, et al. Research for high-speed EMU wheel hardness and polygon-form relationships with solutions[J]. Railway Locomotive and Car, 2018, 38(4): 18-23.(in Chinese)
[73] 孙海荣,蒋 洁,刘先升,等.动车组车轮高阶不圆度成因分析[J].佳木斯大学学报(自然科学版),2018,36(2):281-283,295. SUN Hai-rong, JIANG Jie, LIU Xian-sheng, et al. The research and analysis of EMU wheel polygonization factors[J]. Journal of Jiamusi University(Natural Science Edition), 2018, 36(2): 281-283, 295.(in Chinese)
[74] LECHOWICZ S, HUNT C. Monitoring and managing wheel condition and loading[C]∥National Transportation Safety Board. Proceedings of the International Symposium on Transportation Recorders. Arlington: National Transportation Safety Board, 1999: 205-239.
[75] MINORU O. Development of trackside rolling stock monitoring system[J]. Japanese Railway Engineering, 1999(142): 24-28.
[76] BELOTTI V, CRENNA F, MICHLINI R C, et al.Wheel-flat diagnostic tool via wavelet transform[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 1953-1966.
[77] DONATO P G, URENA J, MAZO M, et al. Design and signal processing of a magnetic sensor arrey for train wheel detection[J]. Sensors and Actuators A: Physical, 2006, 132(2): 516-525.
[78] STRATMAN B, LIU Yong-ming, MAHADEVAN S. Structural health monitoring of railroad wheels using wheel impact load detectors[J]. Journal of Failure Analysis and Prevention, 2007, 7(3): 218-225.
[79] ZAKHAROV S M, ZHAROV I A. Criteria of bogie performance and wheel/rail wear prediction based on wayside measurements[J]. Wear, 2005, 258: 1135-1141.
[80] ZOBORY I. Prediction of wheel/rail profile wear[J].Vehicle System Dynamics, 1997, 28(2/3): 221-259.
[81] 李奕璠.轮轨力连续测试方法及车轮失圆的检测与识別研究[D].成都:西南交通大学,2012. LI Yi-fan. Wheel-rail force continuous measurement method and out-of-round wheel detection and identification[J]. Chengdu: Southwest Jiaotong University, 2012.(in Chinese)
[82] 雷晓燕,杨 天,刘庆杰.“车体-多边形化车轮-轨道”耦合系统动力分析及多边形车轮识别[J].噪声与振动控制,2019,39(2):1-6. LEI Xiao-yan, YANG Tian, LIU Qing-jie. Dynamic analysis and out-of-round wheel recognition of“body-out-of-round wheel-rail” coupling system[J]. Noise and Vibration Control, 2019, 39(2): 1-6.(in Chinese)
[83] 冯坚强,李俊明,王晓浩,等.基于LSSVM 和 PNN 的车轮状态安全域估计及故障诊断[J].信息技术,2017(1):141-145,163. FENG Jian-qiang, LI Jun-ming, WANG Xiao-hao, et al. Safety region estimation and fault diagnosis of wheels based on least squares support vector machine and probabilistic neural networks[J]. Information Technology, 2017(1): 141-145, 163.(in Chinese)
[84] WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1-21.
[85] 孙 琦,张 兵,李艳萍,等.一种波长固定的车轮多边形在线故障检测方法[J].铁道科学与工程学报,2018,15(9):2343-2348. SUN Qi, ZHANG Bing, LI Yan-ping, et al. Wavelength-fixing mechanisms for detecting the wheel polygon-shaped fault onsite[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2343-2348.(in Chinese)
[86] MAGNUS W, LENNART N. Advanced measurement methods make wheels rounder[J]. Noise and Vibration Control, 2006, 12(6): 1-4.
[87] 王瑞乾,李 晔,储丽霞,等.轨道交通车辆车轮显著多边形提取方法[J].噪声与振动控制,2017,37(1):82-85,97. WANG Rui-qian, LI Ye, CHU Li-xia, et al. Method for extracting significant polygons of railway wheels[J]. Noise and Vibration Control, 2017, 37(1): 82-85, 97.(in Chinese)
[88] 张凯轩,周劲松,宫 岛,等.车轮非圆化对地铁车辆振动的影响研究[J].机械设计与制造工程,2018,47(4):82-86. ZHANG Kai-xuan, ZHOU Jin-song, GONG Dao, at al. Analysis on the influence of wheel non-roundness to the vibration of metro vehicle[J]. Machine Design and Manufacturing Engineering, 2018, 47(4): 82-86.(in Chinese)
[89] 尹振坤,吴 越,韩 健.高速列车车轮多边形磨耗对轮轨垂向力的影响[J].铁道学报,2017,39(10):26-32. YIN Zhen-kun, WU Yue, HAN Jian. Effect of polygonal wear of high-speed train wheels on vertical force between wheel and rail[J]. Journal of the China Railway Society, 2017, 39(10): 26-32.(in Chinese)
[90] KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the vancouver mass transit system[J]. Journal of Rail and Rapid Transit, 1992, 206(26): 127-135.
[91] 赵晓男,陈光雄,崔晓璐,等.高速列车车轮多边形磨耗的形成机理及影响因素探究[J].表面技术,2018,47(8):8-13. ZHAO Xiao-nan, CHEN Guang-xiong, CUI Xiao-lu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels [J]. Surface Technology, 2018, 47(8): 8-13.(in Chinese)
[92] ZHAO Xiao-nan, CHEN Guang-xiong, LYU Jin-zhou. et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827.
[93] 张志波.研磨子对车轮不圆的修形作用[J].中国铁路,2018(1):36-40. ZHANG Zhi-bo. Influence of grinder application to profile adjustment of wheel polygon[J]. China Railway, 2018(1): 36-40.(in Chinese)
[94] 伍安旭,冯 畅,吴 波,等.基于研磨子的车轮多边形抑制机理与跟踪试验[J].城市轨道交通研究,2019(3):143-146. WU An-xu, FENG Chang, WU Bo, et al. Suppression mechanism of wheel polygon and tracing test based on abrasive block[J]. Urban Mass Transit, 2019(3): 143-146.(in Chinese)
[95] LIU Xiao-yuan, ZHAI Wan-ming. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J].Wear, 2014, 314(1/2): 282-290.
[96] 高静涛,杨 鑫,秦传鑫.动车组不落轮车床等效锥度及车轮多边形检测功能的设计与实现[J].铁道机车车辆,2018,38(5):51-55. GAO Jing-tao, YANG Xin, QIN Chuan-xin. Design and implementation of equivalent conicity and wheel polygonal detection on EMUs' online wheelset lathe[J]. Railway Locomotive and Car, 2018, 38(5): 51-55.(in Chinese)
[97] 任德祥,陶功权,刘 欢,等.机车多边形磨耗车轮镟修异常原因分析及改进措施[J].中南大学学报(自然科学版),2019,50(9):2317-2326. REN De-xiang, TAO Gong-quan, LIU Huan, et al. Analysis of abnormal turning repair for locomotive wheels with polygonal wear and improvement measures[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2317-2326.(in Chinese)

Memo

Memo:
-
Last Update: 2020-03-24