|Table of Contents|

Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2019年06期
Page:
65-76
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train
Author(s):
ZHU Hai-yan YIN Bi-chao HU Hua-tao XIAO Qian
(School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China)
Keywords:
vehicle engineering harmonic torque joint simulation traction motor gear box housing vibration
PACS:
U270.3
DOI:
10.19818/j.cnki.1671-1637.2019.06.007
Abstract:
In order to research the vibration amplitudes and frequency spectrum distributions of gear box housing and traction motor under the coupling action of electromechanics and their changing trends with the speed of high-speed train, the harmonic frequency distribution of three-phase inverter output voltage and the harmonic torque of traction motor were analyzed, and the torsional vibration model of drive system was established. Based on the theories of direct torque control and vehicle system dynamics, the traction motor control model and multi-body dynamics model of high-speed train were constructed. By means of Simulink-SIMPACK joint simulation platform, the constant torque input model was compared with the torque input model with harmonic torque, and the effects of traction motor harmonic torque on the vibration characteristics of high-speed train gear box housing and traction motor were analyzed at different speeds. Analysis result shows that when the high-speed train runs at a uniform speed of 250 km·h-1, the longitudinal vibration above the large gear, the longitudinal and vertical vibrations above the small gear of gear box housing are seriously affected by the traction motor harmonic torque. The vibration acceleration amplitude increases significantly at the main frequency of 700 Hz that is exactly up to the 6 times of fundamental frequency of traction motor output torque. Under the influence of harmonic torque, the transverse vibration acceleration amplitude of traction motor at the main frequency of 52 Hz increases by 52.78%, and the vertical vibration acceleration amplitude at the main frequency of 49 Hz increases by 18.95%. As the speed of high-speed train increases, the longitudinal vibration of gear box housing and each direction vibration acceleration of traction motor increase gradually, and the influence of traction motor harmonic torque on the root mean square(RMS)of longitudinal vibration acceleration of gear box housing decreases gradually. The longitudinal and vertical vibration accelerations above the small gear of gear box housing and traction motor increase first and then decrease at the 6 times of fundamental frequency, and reach the maximum at the speed of 250 km·h-1. The influences of 6 times fundamental frequency of harmonic torque on the vertical vibrations of gear box housing and traction motor are more obvious than those on their longitudinal vibrations, and the harmonic torque has slight influence on their lateral vibration characteristics. 5 tabs, 14 figs, 32 refs.

References:

[1] CASE M J, TOWN C. Torque pulsations in current-source inverter induction motor drives[J]. Archiv für Elektrotechnik, 1983, 66(2): 111-115.
[2] CHEN Xing, HU Ji-bin, CHEN Kai, et al. Modeling of
electromagnetic torque considering saturation and magnetic field harmonics in permanent magnet synchronous motor for HEV[J]. Simulation Modelling Practice and Theory, 2016, 66: 212-225.
[3] AVANISH T, NARAYANAN G. Analytical evaluation and reduction of torque harmonics in induction motor drives operated at low pulse numbers[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 967-976.
[4] LU Yu-sheng, LIN Shuan-min, HAUSCHILD M, et al. A torque-ripple compensation scheme for harmonic drive systems[J]. Electrical Engineering, 2013, 95(4): 357-365.
[5] SATHEESH G, REDDY T B, SAIBABU C. A family of random PWM algorithms for reduction of torque ripple and current harmonics of direct torque controlled open end winding induction motor[J]. Journal of Control, Automation and Electrical Systems, 2014, 25(3): 349-357.
[6] TAHERI A. Harmonic reduction of direct torque control of six-phase induction motor[J]. ISA Transactions, 2016, 63: 299-314.
[7] ASADZADEH V, DASTFAN A, DARABI A. Selective
harmonic elimination in direct torque controlled permanent magnet synchronous motor drive[J]. COMPEL—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, 38(1): 153-166.
[8] 张海洋,徐海平,方 程,等.基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法[J].中国电机工程学报,2018,38(4):1222-1231.
ZHANG Hai-yang, XU Hai-ping, FANG Cheng, et al. Torque ripple suppression method of direct-drive permanent magnet synchronous motor based on resonant digital filter[J]. Proceedings of the CSEE, 2018, 38(4): 1222-1231.(in Chinese)
[9] 陈诗阳,于 蓬,章 桐,等.基于电流谐波优化的驱动电机转矩波动控制[J].机电一体化,2016(3):41-45.
CHEN Shi-yang, YU Peng, ZHANG Tong, et al. Active control of the electrical machines fluctuating torque based on current harmonics optimization[J]. Mechatronics, 2016(3): 41-45.(in Chinese)
[10] 杜晓彬,黄开胜,黄 信.基于谐波分析的永磁电机齿槽转矩抑制[J].微特电机,2019,47(1):37-40.
DU Xiao-bin, HUANG Kai-sheng, HUANG Xin. Reduction of cogging torque of permanent magnet machines based on harmonic analysis[J]. Small and Special Electrical Machines, 2019, 47(1): 37-40.(in Chinese)
[11] 宋守许,李诺楠,杜 毅,等.抑制永磁同步电机转矩脉动的转子再设计方法[J].中国机械工程,2019,30(17):2084-2090,2134.
SONG Shou-xu, LI Nuo-nan, DU Yi, et al. Rotor redesign method for suppressing torque ripples of permanent magnet synchronous motors[J]. China Mechanical Engineering, 2019, 30(17): 2084-2090, 2134.(in Chinese)
[12] HENAO H, KIA S H, CAPOLINO G A. Torsional-
vibration assessment and gear-fault diagnosis in railway traction system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1707-1717.
[13] DONOLO P, BOSSIO G, DE ANEELO C, et al. Voltage unbalance and harmonic distortion effects on induction motor power, torque and vibrations[J]. Electric Power Systems Research, 2016, 140: 866-873.
[14] SCHRELER L, BENDL J, CHOMAT M. Analysis of influence
of third spatial harmonic on currents and torque of multi-phase synchronous machine with permanent magnets[J]. Electrical Engineering, 2018, 100(3): 2095-2102.
[15] 王文勋.动车组牵引电机转矩脉动研究[D].北京:北京交通大学,2015.
WANG Wen-xun. Research on torque ripple of traction motors in electric multiple units[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[16] 毛 钰,左曙光,林 福,等.转矩波动下电动轮纵向阶次振动特性及理论分析[J].同济大学学报(自然科学版),2016,44(11):1735-1742.
MAO Yu, ZUO Shu-guang, LIN Fu, et al. Experimental and theoretical analysis of horizontal order vibration characteristics of electric wheel under torque ripple[J]. Journal of Tongji University(Natural Science), 2016, 44(11): 1735-1742.(in Chinese)
[17] 夏 薇,王 凯,张建亚,等.基于谐振控制器的谐波削极型永磁同步电机转矩脉动抑制策略[J].中国电机工程学报,2019,39(18):5499-5508.
XIA Wei, WANG Kai, ZHANG Jian-ya, et al. Torque ripple suppression of permanent magnet synchronous motor with harmonic shaped rotors based on resonance controllers[J]. Proceedings of the CSEE, 2019, 39(18): 5499-5508.(in Chinese)
[18] 李葛亮.基于比例谐振调节器的地铁车辆牵引电机谐波抑制研究[J].铁道机车车辆,2019,39(4):111-115.
LI Ge-liang. Research on harmonic suppression of urban rail transit traction motor based on proportional resonant regulator[J]. Railway Locomotive and Car, 2019, 39(4): 111-115.(in Chinese)
[19] LEVA S, MORANDO A P, COLOMBAIONI P. Dynamic
analysis of a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2008, 57(1): 107-119.
[20] REN Z, RAZEK A. A strong coupled model for analysing
dynamic behaviours of non-linear electromechanical systems[J]. IEEE Transactions on Industrial Magnetics, 1994, 30(5): 3252-3255.
[21] 崔利通,池茂儒,朱旻昊,等.高速列车机电一体化控制仿真与分析[J].铁道机车车辆,2014,34(5):6-11.
CUI Li-tong, CHI Mao-ru, ZHU Min-hao, et al. Simulation and analysis of electromechanical integration control in high speed trains[J]. Railway Locomotive and Car, 2014, 34(5): 6-11.(in Chinese)
[22] 王 华,崔利通.高速列车传动系统机电耦合仿真与分析[J].机车电传动,2015(2):31-36.
WANG Hua, CUI Li-tong. Simulation and analysis of electromechanical integration for drive system in high-speed trains[J]. Electric Drive for Locomotives, 2015(2): 31-36.(in Chinese)
[23] 赵怀耘,刘建新,翟婉明.异步牵引电机谐波转矩对机车动力学的影响[J].西南交通大学学报,2009,44(2):269-273.
ZHAO Huai-yun, LIU Jian-xin, ZHAI Wan-ming. Effects of harmonic torques of asynchronous traction motor on locomotive dynamics[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 269-273.(in Chinese)
[24] 黄冠华,张卫华,宋纾崎,等.高速列车驱动齿轮内部动态激扰影响分析[J].机械传动,2014,38(1):92-95.
HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Analysis of effect of inner dynamic excitation on driving gear of high-speed train[J]. Journal of Mechanical Transmission, 2014, 38(1): 92-95.(in Chinese)
[25] 黄冠华,张卫华,宋纾崎,等.高速列车齿轮传动系统谐振分析[J].交通运输工程学报,2014,14(6):51-58.
HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Harmonic resonance analysis of gear transmission system for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58.(in Chinese)
[26] 李广全,刘志明,呙如兵,等.高速列车齿轮箱应力响应与疲劳损伤评估[J].交通运输工程学报,2018,18(1):79-88.
LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88.(in Chinese)
[27] 王文静,李广全,韩俊臣,等.高速列车齿轮箱箱体动应力影响规律[J].交通运输工程学报,2019,19(1):85-95.
WANG Wen-jing, LI Guang-quan, HAN Jun-chen, et al. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95.(in Chinese)
[28] 刘文生,李 文.牵引电机传动装置振动特性仿真分析[J].铁道学报,2013,35(8):44-47.
LIU Wen-sheng, LI Wen. Simulation analysis on vibration characteristics of traction motor transmission device[J]. Journal of the China Railway Society, 2013, 35(8): 44-47.(in Chinese)
[29] 李翔飞.高速列车牵引电机转向架轴系扭振研究[D].北京:北京交通大学,2015.
LI Xiang-fei. Shafts torsional vibration between traction motor and bogie of high-speed train[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[30] 赵心颖,林 飞,杨中平,等.高速列车牵引传动系统机电耦合振动特性研究[J].铁道学报,2018,40(9):40-47.
ZHAO Xin-ying, LIN Fei, YANG Zhong-ping, et al. Study on mechanism and suppression of electromechanical coupling vibration in traction drive system of high-speed train[J]. Journal of the China Railway Society, 2018, 40(9): 40-47.(in Chinese)
[31] 陈哲明,王理章,喻 洋.联合仿真下谐波转矩对高速列车的动力学分析[J].机械设计与制造,2016(3):124-126,130.
CHEN Zhe-ming, WANG Li-zhang, YU Yang. Dynamic analysis of high speed train under the harmonic torque of the joint simulation[J]. Machinery Design and Manufacture, 2016(3): 124-126, 130.(in Chinese)
[32] 徐 坤,曾 京,祁亚运,等.牵引电机谐波转矩对高速动车动力学性能的影响[J].振动与冲击,2018,37(19):153-158,182.
XU Kun, ZENG Jing, QI Ya-yun, et al. Influences of harmonic torque of traction motor on dynamic performance of high-speed trains[J]. Journal of Vibration and Shock, 2018, 37(19): 153-158, 182.(in Chinese)

Memo

Memo:
-
Last Update: 2020-01-13