|Table of Contents|

Aging behaviors of nanoscale mechanical properties of asphalt phases(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2019年06期
Page:
1-13
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Aging behaviors of nanoscale mechanical properties of asphalt phases
Author(s):
WANG Ming1 LIU Li-ping2
(1. Airport College, Civil Aviation University of China, Tianjin 300300, China; 2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China)
Keywords:
pavement material asphalt nanoscale phase mechanical property of phase aging behavior Halpin-Tsai model
PACS:
U414
DOI:
10.19818/j.cnki.1671-1637.2019.06.001
Abstract:
The original, short-term aging and long-term aging base asphalts and SBS modified asphalts were selected as the research objects, the atomic force microscopy with quantitative nano mechanical(QNM)property function mode was used to measure the mechanical properties of the asphalts in nanoscale phases. The software Nano Scope Analysis was applied to quantitatively analyze the mechanical images of asphalt phases. Two indicators such as the phase modulus and adhesion were mostly analyzed. The Halpin-Tsai model in the field of mesoscale mechanics was used to study the composite behaviors of mechanical properties of the asphalts in multiple phases, and the aging behaviors of mechanical properties of the asphalt phases in nanoscale were investigated. Analysis result shows that the nanoscale moduli of bee phase and base phase in the base asphalt are concentrated at 600.0 and 18.3 MPa, respectively, and the corresponding nanoscale adhesion are concentrated at 10.3 and 18.6 nN, respectively. The nanoscale moduli of bee phase and base phase in the SBS modified asphalt are concentrated at 899 and 35 MPa, respectively, and the corresponding nanoscale adhesion are concentrated at 30.2 and 38.4 nN, respectively. For the base asphalt, the composite moduli of original, short-term aging and long-term aging asphalts are 111, 138, and 187 MPa, respectively, and the composite adhesion are 16.7, 14.3, and 4.2 nN, respectively. For the SBS modified asphalt, the composite moduli of original, short-term aging and long-term aging asphalts are 158, 313, and 547 MPa, respectively, and the composite adhesion are 32.2, 35.0, and 15.8 nN, respectively. In the nanoscale phase structure of asphalt, the bee phase has a high modulus and a low adhesion, while the base phase has a low modulus and a high adhesion. The phase modulus and adhesion of SBS modified asphalt are significantly higher than that of base asphalt. As the aging degree increases, the mechanical properties of asphalt phases change, and the aging behaviors of different phases vary significantly. Therefore, the QNM technology can effectively identify the nanoscale mechanical properties of asphalt phases, and the Halpin-Tsai model can be used to quantify the composite behaviors of mechanical properties of asphalt phases. 2 tab, 18 figs, 34 refs.

References:

[1] 王 明,刘黎萍,罗 东.纳米尺度沥青微观结构特征演化分析[J].中国公路学报,2017,30(1):10-16.
WANG Ming, LIU Li-ping, LUO Dong. Analysis of nanoscale evolution features of microstructure of asphalt[J]. China Journal of Highway and Transport, 2017, 30(1): 10-16.(in Chinese)
[2] REBELO L M, DE SOUSA J S, ABREU A S, et al. Aging of asphaltic binders investigated with atomic force microscopy[J]. Fuel, 2014, 117: 15-25.
[3] GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate[J]. Frontiers of Structural and Civil Engineering, 2018, 12(2): 248-259.
[4] 王子仪,张荣君,郑玉祥,等.AFM扫描参数对样品粗糙度测量的影响[J].实验室研究与探索,2013,32(2):5-7.
WANG Zi-yi, ZHANG Rong-jun, ZHENG Yu-xiang, et al. Influence of AFM scanning parameters on surface roughness measurement[J]. Research and Exploration in Laboratory, 2013, 32(2): 5-7.(in Chinese)
[5] XING Cheng-wei, LIU Li-ping, WANG Ming. A new
preparation method and imaging parameters of asphalt binder samples for atomic force microscopy[J]. Construction and Building Materials, 2019, 205: 622-632.
[6] HE Hong-sen, ZHANG En-hao, FATOKOUN S, et al.
Effect of the softer binder on the performance of repeated RAP binder[J]. Construction and Building Materials, 2018, 178: 280-287.
[7] 崔亚楠,赵 琳,韩吉伟,等.盐冻融循环条件下沥青高温流变性能及微观结构[J].复合材料学报,2017,34(8):1839-1846.
CUI Ya-nan, ZHAO Lin, HAN Ji-wei, et al. High temperature rheological properties and microstructures of asphalt under salt freezing cycles[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1839-1846.(in Chinese)
[8] LOEBER L, SUTTON O, MOREL J, et al. New direct
observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39.
[9] PAULI A T, GRIMES W. Surface morphological stability modeling of SHRP asphalts: stability and compatibility of heavy oils and residual[J]. American Chemical Society: Division of Petroleum Chemistry, 2003, 48(1): 19-23.
[10] DE MORAES M B, PEREIRA R B, SIMAO R A, et al.
High temperature AFM study of CAP 30/45 pen grade bitumen[J]. Journal of Microscopy, 2010, 239(1): 46-53.
[11] NAHAR S N, SCHMETS A J M, SCARPAS A, et al.
Temperature and thermal history dependence of the microstructure in bituminous materials[J]. European Polymer Journal, 2013, 49(8): 1964-1974.
[12] WU Shao-peng, PANG Ling, MO Lian-tong, et al. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen[J]. Construction and Building Materials, 2009, 23(2): 1005-1010.
[13] WU Shao-peng, ZHU Guo-jun, CHEN Zheng, et al. Laboratory research on rheological behavior and characterization of ultraviolet aged asphalt[J]. Journal of Central South University of Technology, 2008, 15(S1): 369-373.
[14] YANG Jun, GONG Ming-hui, WANG Xiao-ting, et al.
Observation and characterization of asphalt microstructure based on atomic force microscope[J]. Journal of Southeast University(English Edition), 2014, 30(3): 353-357.
[15] 易军艳,庞骁奕,姚冬冬,等.基于原子力显微镜技术的沥青与矿料表面粗糙度及黏附特性[J].复合材料学报,2017,34(5):1111-1121.
YI Jun-yan, PANG Xiao-yi, YAO Dong-dong, et al.
Characterization of surface roughness and adhesive mechanism of asphalt and mineral aggregate based on atomic microscopy method[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1111-1121.(in Chinese)
[16] 郭 猛.沥青与矿料界面作用机理及多尺度评价方法研究[D].哈尔滨:哈尔滨工业大学,2016.
GUO Meng. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)
[17] 龚明辉.生物质再生沥青混合料微观特性研究[D].南京:东南大学,2017.
GONG Ming-hui. Investigation on micro-properties of bio-rejuvenated asphalt mixture[D]. Nanjing: Southeast University, 2017.(in Chinese)
[18] JÄGER A, LACKNER R, EISENMENGER-SITTNER C,
et al. Identification of four material phases in bitumen by atomic force microscopy[J]. Road Materials and Pavement Design, 2004, 5(S1): 9-24.
[19] ALLEN R G. Structural characterization of micromechanical properties in asphalt using atomic force microscopy[D]. College Station: Texas A & M University, 2010.
[20] GONG Ming-hui, YANG Jun, WEI Jian-ming, et al.
Characterization of adhesion and healing at the interface between asphalt binders and aggregate using atomic force microscopy[J]. Transportation Research Record, 2015(2506): 100-106.
[21] 解赛楠.常温域沥青表面纳观构造及粘附特性研究[D].哈尔滨:哈尔滨工业大学,2017.
XIE Sai-nan. Study on nanostructure and adhesion of asphalt surface in normal temperature range[D]. Harbin: Harbin Institute of Technology, 2017.(in Chinese)
[22] DAS P K, KRINGOS N, BIRGISSON B. Microscale
investigation of thin film surface ageing of bitumen[J]. Journal of Microscopy, 2014, 254(2): 95-107.
[23] LYNE A L, WALLQVIST V, BIRGISSON B. Adhesive
surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256.
[24] RASHID F, HOSSAIN Z, BHASIN A. Nanomechanistic
properties of reclaimed asphalt pavement modified asphalt binders using an atomic force microscope[J]. International Journal of Pavement Engineering, 2019, 20(3): 357-365.
[25] FILIPPELLI L, DE SANTO M P, GENTILE L, et al.
Quantitative evaluation of the restructuring effect of a warm mix additive on bitumen recycling production[J]. Road Materials and Pavement Design, 2015, 16(3): 741-749.
[26] PAULI A T, GRIMES R W, BEEMER A G, et al.
Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy[J]. International Journal of Pavement Engineering, 2011, 12(4): 291-309.
[27] VELANKAR S, COOPER S L. Microphase separation and rheological properties of polyurethane melts. 3.Effect of block incompatibility on the viscoelastic properties[J]. Macromolecules, 2000, 33(2): 395-403.
[28] 刘黎萍,邢成炜,王 明.基于原子力显微技术的混合料中沥青微尺度性能测试方法[J].同济大学学报(自然科学版),2018,46(9):1218-1224.
LIU Li-ping, XING Cheng-wei, WANG Ming. A method of determination of micro scale properties of asphalt components in mixtures based on atomic force microscopy[J]. Journal of Tongji University(Natural Science), 2018, 46(9): 1218-1224.(in Chinese)
[29] 邢成炜,刘黎萍,刘 威.线型SBS改性沥青不同时程老化流变特征及阶段判别[J].东南大学学报(自然科学版),2019,49(2):380-387.
XING Cheng-wei, LIU Li-ping, LIU Wei. Rheological characteristics and phase discrimination of linear SBS modified asphalt under different time aging[J]. Journal of Southeast University(Natural Science), 2019, 49(2): 380-387.(in Chinese)
[30] 祁文洋,李立寒,张明杰,等.SBS改性沥青的阶段性老化特征与机理[J].同济大学学报(自然科学版),2016,44(1):95-99.
QI Wen-yang, LI Li-han, ZHANG Ming-jie, et al. Characteristics and mechanism of SBS modified asphalt's phased aging[J]. Journal of Tongji University(Natural Science), 2016, 44(1): 95-99.(in Chinese)
[31] ARIFUZZAMAN M, ISLAM M S, HOSSAIN M I.
Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence[J]. Neural Computing and Applications, 2017, 28(1): 125-134.
[32] 张恒龙,徐国庆,朱崇政,等.长期老化对基质沥青与SBS改性沥青化学组成、形貌及流变性能的影响[J].长安大学学报(自然科学版),2019,39(2):10-18,56.
ZHANG Heng-long, XU Guo-qing, ZHU Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(2): 10-18, 56.(in Chinese)
[33] RAAB C, CAMARGO I, PARTL M N. Ageing and
performance of warm mix asphalt pavements[J]. Journal of Traffic and Transportation Engineering(English Edition), 2017, 4(4): 388-394.
[34] 王朝辉,陈 谦,高志伟,等.浇注式沥青混凝土现状与发展[J].材料导报,2017,31(9):135-145.
WANG Chao-hui, CHEN Qian, GAO Zhi-wei, et al. Review on status and development of gussasphalt concrete[J]. Materials Review, 2017, 31(9): 135-145.(in Chinese)

Memo

Memo:
-
Last Update: 2020-01-13