|Table of Contents|

Longitudinal deformation of expansion joint of suspension bridge under wind and random traffic flow(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2019年05期
Page:
21-32
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Longitudinal deformation of expansion joint of suspension bridge under wind and random traffic flow
Author(s):
LI Guang-ling HAN Wan-shui CHEN Xiao XU Xin LIU Xiu-ping
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
bridge engineering expansion joint longitudinal deformation simulation wind-random traffic flow-steel truss suspension bridge analysis system hourly maximum displacement cumulative displacement life evaluation
PACS:
U441.3
DOI:
-
Abstract:
To dynamically simulate and evaluate the longitudinal deformation performance of expansion joint of long-span steel truss suspension bridge under the combining action of wind and random traffic flow at operation stage, an analysis system of wind-random traffic flow-steel truss suspension bridge was established. Based on the existing wind-vehicle-bridge coupling vibration analysis system of single beam, the spring element was introduced to simulate the expansion joint, and the analysis system was improved from the single beam to the grillage method via two aspects of the vehicle-bridge coupling relationship and the fine loading of wind on steel truss girder section. The traffic flow load was simulated and reproduced based on the monitoring data. The dynamic displacement time history response of expansion joint of a typical long-span steel truss suspension bridge under the action of random traffic flow was calculated through the established analysis system. The correlation between the cumulative displacement and traffic flow weight was obtained and verified. Taking the thickness of wear-resisting material of sliding support as the evaluation indicator, the critical value of cumulative displacement of expansion joint was determined, and the normal service life of expansion joint was evaluated. The parameter sensitivity analysis on the longitudinal deformation performance of expansion joint under different wind speeds and random traffic flow was carried out. Analysis result shows that the hourly maximum displacement of expansion joint under the random traffic flow is far less than the designed allowance -880-880 mm. The cumulative displacement of expansion joint is positively correlated with the traffic flow load in corresponding period. Under the combining action of wind and random traffic flow, when the wind speed is less than 15 m·s-1, the main load factor affecting the longitudinal deformation of expansion joint is random traffic flow load. When the wind speed is greater than 15 m·s-1, the main load factor is wind load. Both the hourly maximum displacement and hourly cumulative displacement of expansion joint increase with the increase of wind speed. When the wind speed increases to 20 m·s-1, the longitudinal deformation of expansion joint generated by the wind load is approximately 2 times of that under the traffic flow load. The established wind-random traffic flow-steel truss suspension bridge analysis system can provide a numerical analysis platform for dynamic simulation and performance evaluation on the longitudinal deformation of expansion joint under operation loads. 19 figs, 31 refs.

References:

[1] SUN Zhen, ZHANG Yu-feng. Failure mechanism of expansion joints in a suspension bridge[J]. Journal of Bridge Engineering, 2016, 21(10): 05016005-1-13.
[2] GUO Tong, LIU Jie, HUANG Ling-yu. Investigation and control of excessive cumulative girder movements of long-span steel suspension bridge[J]. Engineering Structures, 2016, 125: 217-226.
[3] 汪 锋,承 宇.江阴大桥伸缩缝损坏原因分析及设计改进[J].现代交通技术,2010,7(2):64-66.
WANG Feng, CHENG Yu. Reasons analysis on the expansion joint damage and design improvement[J]. Modern Transportation Technology, 2010, 7(2): 64-66.(in Chinese)
[4] NI Y Q, HUA X G, WONG K Y, et al. Assessment of
bridge expansion joints using long-term displacement and temperature measurement[J]. Journal of Performance of Constructed Facilities, 2007, 21(2): 143-151.
[5] 邓 扬,李爱群,丁幼亮,等.基于长期监测数据的大跨桥梁结构伸缩缝损伤识别[J].东南大学学报(自然科学版),2011,41(2):336-341.
DENG Yang, LI Ai-qun, DING You-liang, et al. Damage identification of expansion joints in long span bridge using long-term monitoring data[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(2): 336-341.(in Chinese)
[6] 邓 扬,李爱群,丁幼亮.大跨悬索桥梁端位移与温度的相关性研究及其应用[J].公路交通科技,2009,26(5):54-58.
DENG Yang, LI Ai-qun, DING You-liang. Research and application of correlation between beam end displacement and temperature of long-span suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 54-58.(in Chinese)
[7] 张宇峰,陈雄飞,张立涛,等.大跨悬索桥伸缩缝状态分析与处理措施[J].桥梁建设,2013,43(5):49-54.
ZHANG Yu-feng, CHEN Xiong-fei, ZHANG Li-tao, et al. Condition analysis and handling measures for expansion joints of long span suspension bridges[J]. Bridge Construction, 2013, 43(5): 49-54.(in Chinese)
[8] GUO Tong, LIU Jie, ZHANG Yu-feng, et al. Displacement monitoring and analysis of expansion joints of long-span steel bridges with viscous dampers[J]. Journal of Bridge Engineering, 2015, 20(9): 04014099-1-11.
[9] GUO Tong, HUANG Ling-yu, LIU Jie, et al. Damage
mechanism of control springs in modular expansion joints of long-span bridges[J]. Journal of Bridge Engineering, 2018, 23(7): 04018038-1-11.
[10] HAN W S, MA L, CAI C S, et al. Nonlinear dynamic
performance of long-span cable-stayed bridge under traffic and wind[J]. Wind and Structures, 2015, 20(2): 249-274.
[11] CAI C S, CHEN S R. Framework of vehicle-bridge-wind
dynamic analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8): 579-607.
[12] XU Y L, GUO W H. Dynamic analysis of coupled road vehicle and cable-stayed bridge system under turbulent wind[J]. Engineering Structures, 2003, 25(4): 473-486.
[13] LI Yong-le, QIANG Shi-zhong, LIAO Hai-li, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6): 483-507.
[14] HAN Y, CAI C S, ZHANG J R, et al. Effects of aerodynamic parameters on the dynamic response of road vehicles and bridges under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134: 78-95.
[15] 王少钦,夏 禾,郭薇薇,等.考虑桥梁几何非线性的风-车-桥耦合振动分析[J].工程力学,2013,30(4):122-128.
WANG Shao-qin, XIA He, GUO Wei-wei, et al. Coupling vibration analysis of wind-train-bridge system considering geometric nonlinearity of bridge[J]. Engineering Mechanics, 2013, 30(4): 122-128.(in Chinese)
[16] 韩万水,武 隽,马 麟,等.基于微观交通流模型的风-车-桥系统高真实度模拟[J].中国公路学报,2015,28(11):37-45.
HAN Wan-shui, WU Jun, MA Lin, et al. High-fidelity simulation of wind-vehicle-bridge system based on microscopic traffic flow model[J]. China Journal of Highway and Transport, 2015, 28(11): 37-45.(in Chinese)
[17] 韩万水,陈艾荣.随机车流下的风-汽车-桥梁系统空间耦合振动研究[J].土木工程学报,2008,41(9):97-102.
HAN Wan-shui, CHEN Ai-rong. Three-dimensional coupling vibration of wind-vehicle-bridge systems under random traffic flow[J]. China Civil Engineering Journal, 2008, 41(9): 97-102.(in Chinese)
[18] 韩万水,马 麟,汪 炳,等.随机车流-桥梁系统耦合振动精细化分析与动态可视化[J].中国公路学报,2013,26(4):78-87.
HAN Wan-shui, MA Lin, WANG Bing, et al. Refinement analysis and dynamic visualization of traffic-bridge coupling vibration system[J]. China Journal of Highway and Transport, 2013, 26(4): 78-87.(in Chinese)
[19] 韩万水,赵 越,刘焕举,等.风-车-桥耦合振动研究现状及发展趋势[J].中国公路学报,2018,31(7):1-23.
HAN Wan-shui, ZHAO Yue, LIU Huan-ju, et al. Research and development trends of wind-vehicle-bridge coupling vibration systems[J]. China Journal of Highway and Transport, 2018, 31(7): 1-23.(in Chinese)
[20] 李永乐,向活跃,强士中.风-列车-桥系统耦合振动研究综述[J].中国公路学报,2018,31(7):24-37.
LI Yong-le, XIANG Huo-yue, QIANG Shi-zhong. Review on coupling vibration of wind-vehicle-bridge systems[J]. China Journal of Highway and Transport, 2018, 31(7): 24-37.(in Chinese)
[21] 龙关旭,黄平明,袁 婷,等.非线性随机车流-自锚式悬索桥耦合振动分析系统[J].中国公路学报,2018,31(7):147-155.
LONG Guan-xu, HUANG Ping-ming, YUAN Ting, et al. Analytic system of nonlinear random traffic flow-self-anchored suspension bridge coupling vibration[J]. China Journal of Highway and Transport, 2018, 31(7): 147-155.(in Chinese)
[22] 刘焕举,韩万水,丁晓婷,等.斜风作用下风-车-桥非线性分析系统建立[J].中国公路学报,2018,31(7):110-118.
LIU Huan-ju, HAN Wan-shui, DING Xiao-ting, et al. A nonlinear analysis system for wind-vehicle-bridge under skew wind[J]. China Journal of Highway and Transport, 2018, 31(7): 110-118.(in Chinese)
[23] 严 琨,王立新,姜 慧.伸缩缝刚度对大跨度悬索桥动力特性的影响[J].震灾防御技术,2017,12(3):667-676.
YAN Kun, WANG Li-xin, JIANG Hui. Dynamic characteristics of long-span suspension bridge with variability of stiffness of expansion joints[J]. Technology for Earthquake Disaster Prevention, 2017, 12(3): 667-676.(in Chinese)
[24] 邓 露,何 维,俞 扬,等.公路车-桥耦合振动的理论和应用研究进展[J].中国公路学报,2018,31(7):38-54.
DENG Lu, HE Wei, YU Yang, et al. Research progress in theory and application of highway vehicle-bridge coupling vibration[J]. China Journal of Highway and Transport, 2018, 31(7): 38-54.(in Chinese)
[25] 韩万水,王 涛,李永庆,等.基于模型修正梁格法的车桥耦合振动分析系统[J].中国公路学报,2011,24(5):47-55.
HAN Wan-shui, WANG Tao, LI Yong-qing, et al. Analysis system of vehicle-bridge coupling vibration with grillage method based on model updating[J]. China Journal of Highway and Transport, 2011, 24(5): 47-55.(in Chinese)
[26] 院素静.公路车-桥耦合典型车辆运动方程的建立及软件设计[D].西安:长安大学,2014.
YUAN Su-jing. Development and programing of typical vehicles equation of motion for coupling vibration between highway bridge and vehicles[D]. Xi'an: Chang'an University, 2014.(in Chinese)
[27] 韩万水,刘焕举,包大海,等.大跨钢桁梁悬索桥风-车-桥分析系统建立与可视化实现[J].土木工程学报,2018,51(3):99-108.
HAN Wan-shui, LIU Huan-ju, BAO Da-hai, et al. Establishment and visualization of wind-vehicle-bridge analysis system for the large-span steel truss suspension bridge[J]. China Civil Engineering Journal, 2018, 51(3): 99-108.(in Chinese)
[28] LIN Y K, LI Q C. New stochastic theory for bridge stability in turbulent flow[J]. Journal of Engineering Mechanics, 1993, 119(1): 113-127.
[29] 汪 炳.双向多车道随机车流作用下大跨钢桁梁悬索桥空间动力行为研究[D].西安:长安大学,2011.
WAGN Bing. Spatial dynamic behavior of long-span steel truss girder suspension bridge under two-way multi-lane stochastic traffic flow[D]. Xi'an: Chang'an University, 2011.(in Chinese)
[30] 赵建峰.多地域公路桥梁常规车辆及特重车荷载研究[D].西安:长安大学,2014.
ZHAO Jian-feng. Research on normal vehicle load and extra-heavy truck load of multi-regional highway bridges[D]. Xi'an: Chang'an University, 2014.(in Chinese)
[31] 龙晓鸿,李 黎,胡 亮.四渡河悬索桥抖振响应时域分析[J].工程力学,2010,27(增1):113-117.
LONG Xiao-hong, LI Li, HU Liang. Time domain analysis of buffeting responses of Sidu River Suspension Bridge[J]. Engineering Mechanics, 2010, 27(S1): 113-117.(in Chinese)

Memo

Memo:
-
Last Update: 2019-11-13