[1] RAHMANI A, PAK A. Dynamic behavior of pile foundations under cyclic loading in liquefiable soils[J]. Computers and Geotechnics, 2012, 40: 114-126.
[2] CHUNG Y, NAGAE T, HITAKA T, et al. Seismic
resistance capacity of high-rise buildings subjected to long-period ground motions: e-defense shaking table test[J]. Journal of Structural Engineering, 2010, 136(6): 637-644.
[3] 凌贤长.E-Defense建设与相关研究[J].地震工程与工程振动,2008,28(4):111-116.
LING Xian-zhang. E-defense and research tests[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(4): 111-116.(in Chinese)
[4] CHAU K T, SHEN C Y, GUO X. Nonlinear seismic soil-pile-structure interactions: shaking table tests and FEM analyses[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2): 300-310.
[5] DASH S R, BHATTACHARYA S, BLAKEBOROUGH A. Bending-buckling interaction as a failure mechanism of piles in liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(1/2): 32-39.
[6] 王青桥,韦 晓,王君杰,等.桥梁桩基震害特点及其破坏机理[J].震灾防御技术,2009,4(2):167-173.
WANG Qing-qiao, WEI Xiao, WANG Jun-jie, et al. Characteristics and mechanisms of earthquake damage of bridge pile foundation[J]. Technology for Earthquake Disaster Prevention, 2009, 4(2): 167-173.(in Chinese)
[7] 唐 亮,凌贤长,徐鹏举,等.可液化场地桥梁群桩基础地震响应振动台试验研究[J].岩土工程学报,2010,32(5):672-680.
TANG Liang, LING Xian-zhang, XU Peng-ju. Shaking table test on seismic response of pile groups of bridges in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 672-680.(in Chinese)
[8] 凌贤长,王东升,王志强,等.液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J].土木工程学报,2004,37(11):67-72.
LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale saking table model test of dynamic soil-pile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004, 37(11): 67-72.(in Chinese)
[9] 李培振,程 磊,吕西林,等.可液化土-高层结构地震相互作用振动台试验[J].同济大学学报(自然科学版),2010,38(4):467-474.
LI Pei-zhen, CHENG Lei, LYU Xi-lin, et al. Shaking table testing on high-rise buildings considering liquefiable soil-structure interaction[J]. Journal of Tongji University(Natural Science), 2010, 38(4): 467-474.(in Chinese)
[10] LIYANAPATHIRANA D S, POULOS H G. Seismic lateral response of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1466-1479.
[11] 王 睿,张建民,张 嘎.液化地基侧向流动引起的桩基础破坏分析[J].岩土力学,2011,32(增1):501-506.
WANG Rui, ZHANG Jian-min, ZHANG Ga. Analysis of failure of piled foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32(S1): 501-506.(in Chinese)
[12] SU Lei, TANG Liang, LING Xian-zhang, et al. Pile response to liquefaction-induced lateral spreading: a shake-table investigation[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 196-204
[13] 黄占芳,白晓红.可液化砂土中群桩基础地震响应的振动台试验研究[J].振动与冲击,2013,32(18):153-158.
HUANG Zhan-fang, BAI Xiao-hong. Shaking table model test for seismic response of a pile group foundation with liquefiable sandy soil[J]. Journal of Vibration and Shock. 2013, 32(18): 153-158.(in Chinese)
[14] 夏修身,李建中.近场地震动对桩基础高墩摇摆反应的影响[J].哈尔滨工业大学学报,2014,46(4):82-86.
XIA Xiu-shen, LI Jian-zhong. Effect of near-field ground motion on the rocking response of tall pier with pile foundations[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 82-86.(in Chinese)
[15] 张泽涵,钱德玲,戴启权,等.液化地基上超高层结构模型振动台试验研究[J].建筑结构学报,2016,37(7):114-120.
ZHANG Ze-han, QIAN De-ling, DAI Qi-quan, et al. Shaking table test of super high-rise structure on liquefied ground[J]. Journal of Building Structures, 2016, 37(7): 114-120.(in Chinese)
[16] 戴启权,钱德玲,张泽涵,等.液化场地超高层建筑群桩基础动力响应试验研究[J].岩石力学与工程学报,2015,34(12):2572-2579.
DAI Qi-quan, QIAN De-ling, ZHANG Ze-han, et al. Experimental research on dynamic response of pile group of super highrise building on liquefied ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2572-2579.(in Chinese)
[17] 孔锦秀.地震动特性对液化场地桥梁桩基础动力反应的影响[D].哈尔滨:哈尔滨工业大学,2016.
KONG Jin-xiu. Effects of ground motion characteristics on dynamic response of bridge pile foundations in liquefiable soils[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)
[18] 张效禹,唐 亮,凌贤长,等.液化场地桥梁桩-土动力相互作用p-y曲线特性研究[J].防灾减灾工程学报,2014,34(5):619-625.
ZHANG Xiao-yu, TANG Liang, LING Xian-zhang, et al. Analysis on characteristics of dynamic p-y curves for soil-pile interaction in liquefiable ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 619-625.(in Chinese)
[19] 冯忠居,谢永利.大直径钻埋预应力混凝土空心桩承载力的试验[J].长安大学学报(自然科学版),2005,25(2):50-54.
FENG Zhong-ju, XIE Yong-1i. Simulation test of large diameter bored hollow pile of prestressing force concrete[J]. Journal of Chang'an University(Natural Science Edition), 2005, 25(2): 50-54.(in Chinese)
[20] 冯忠居,任文峰,李 晋.后压浆技术对桩基承载力的影响[J].长安大学学报(自然科学版),2006,26(3):35-38.
FENG Zhong-ju, REN Wen-feng, LI Jin. Bearing capacity of post grouting pile foundation[J]. Journal of Chang'an University(Natural Science Edition), 2006, 26(3): 35-38.(in Chinese)
[21] 李 晋,冯忠居,谢永利.大直径空心桩承载性状的数值仿真[J].长安大学学报(自然科学版),2004,24(4):36-39.
LI Jin, FENG Zhong-ju, XIE Yong-li. Numerical simulation of large diameter hollow pile bearing performance[J]. Journal of Chang'an University(Natural Science Edition), 2004, 24(4): 36-39.(in Chinese)
[22] 劳伟康,周立运,王 钊.大直径柔性钢管嵌岩桩水平承载力试验与理论分析[J].岩石力学与工程学报,2004,23(10):1770-1777.
LAO Wei-kang, ZHOU Li-yun, WANG Zhao. Field test and theoretical analysis on flexible large-diameter rock-socketed steel pipe piles under lateral load[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1770-1777.(in Chinese)
[23] 冯士伦,王建华.饱和砂土中桩基的振动台试验[J].天津大学学报,2006,39(8):951-956.
FENG Shi-lun, WANG Jian-hua. Shake table test on pile foundation in saturated sand[J]. Journal of Tianjin University, 2006, 39(8): 951-956.(in Chinese)
[24] 王建华,冯士伦.桩土相互作用的振动台试验研究[J].岩土工程学报,2004,26(5):616-618.
WANG Jian-hua, FENG Shi-lun. The shake table test on soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 616-618.(in Chinese)
[25] 张鑫磊,王志华,许振巍,等.液化砂土流动效应的振动台试验研究[J].岩土力学,2016,37(8):2347-2352.
ZHANG Xin-lei, WANG Zhi-hua, XU Zhen-wei, et al. Shaking table tests on flow effects of liquefied sands[J]. Rock and Soil Mechanics, 2016, 37(8): 2347-2352.(in Chinese)
[26] JANALIZADEH A, ZAHMATKESH A. Lateral response of pile foundations in liqueable soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(5): 532-539.
[27] 冯士伦,王建华,郭金童.液化土层中桩基抗震性能研究[J]. 岩石力学与工程学报,2005,24(8):1402-1406.
FENG Shi-lun, WANG Jian-hua, GUO Jin-tong. Seismic resistance of pile foundation in liquefaction layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1402-1406.(in Chinese)
[28] 韦 晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
WEI Xiao, FAN Li-chu, WANG Jun-jie. Shake table test on soil-pile-structure interaction[J]. China Civil Engineering Journal, 2002, 35(4): 91-97.(in Chinese)
[29] 董芸秀,冯忠居,郝宇萌,等.岩溶区桥梁桩基承载力试验与合理嵌岩深度[J].交通运输工程学报,2018,18(6):27-36.
DONG Yun-xiu, FENG Zhong-ju, HAO Yu-meng, et al. Experiment on bearing capacity of bridge pile foundations in karst area sand reasonable rock-socketed depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 27-36.(in Chinese)
[30] SOMERVILLE P. Magnitude scaling of the near fault
rupture directivity pulse in near-fault ground motions[R]. Pasadena: URS Group, Inc., 2003.
[31] TAZARV M. Quantitative identification of near-fault ground motion using Baker's method, an application for March 2011 Japan M9.0 Earthquake[R]. Ottawa: Carleton University, 2011.
[32] BAKER J W. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97(5): 1486-1501.
[33] CHAI J F, LIAO W I, TENG T J, et al. Current development of seismic design code to consider the near-fault effect in Taiwan[J]. Earthquake Engineering and Engineering Seismology, 2001, 3(2): 47-56.