|Table of Contents|

Calculation method of restoring force model of four-element variable cross-sectional concrete filled steel tubular laced column(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2018年05期
Page:
77-89
Research Field:
Publishing date:

Info

Title:
Calculation method of restoring force model of four-element variable cross-sectional concrete filled steel tubular laced column
Author(s):
OU Zhi-jing1 CHEN Sheng-fu1 WU Qing-xiong2 YUAN Hui-hui2
(1. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, China; 2. College of Civil Engineering, Fuzhou University, Fuzhou 350108, Fujian, China)
Keywords:
bridge engineering variable cross-section concrete filled steel tube laced column skeleton curve restoring force model
PACS:
U448.38
DOI:
-
Abstract:
The finite element analysis method of seismic performance of four-element variable cross-sectional concrete-filled steel tubular(CFST)laced column was put forward. The specimens were modeled and analyzed by the OpenSEES general program, and the load-displacement hysteretic curves and horizontal peak loads of laced columns were computed. The influence rules of longitudinal slope, axial compression ratio, slenderness ratio, area ratio of lacing tubes to longitudinal tubes, yield strength of steel, concrete strength, arrangement type of lacing tubes, and other extension parameters on the skeleton curves of variable cross-sectional CFST laced columns with flat or inclined tubes were investigated. According to the calculation frame of skeleton curves of equal sectional CFST laced columns, the calculation formulas of skeleton curves characteristic values(including the elastic stiffness, horizontal peak load and its displacement, and fall-period stiffness)of four-element variable cross-sectional CFST laced columns were obtained by the equivalent length method. The calculation formula of restoring force model was deduced resorting to the calculation model of skeleton curve and verified by the engineering example. Research result indicates that the axial compression ratio, slenderness ratio, longitudinal slope, area ratio of lacing tube to longitudinal tube, and material parameters are the main influence parameters on the seismic performance of variable cross-sectional CFST laced columns, the common influence rules are the same as the rules on the equal section laced column, and the numerical difference is within 20%. The calculated results of characteristic values of each specimen are in good agreement with the finite element analysis results, and their ratios are 0.990-1.029, the mean square errors are 0.105-0.153, and the errors are basically controlled within 15%. The errors to calculate the restoring force model of four-element variable cross-sectional CFST laced columns are within 12%, so the computation result is reliable. 2 tabs, 21 figs, 32 refs.

References:


[1] OU Zhi-jing. The practice of concrete filled steel tube piers to bridges: a review[J]. Mechanics and Materials, 2013, 405-408: 1602-1604
[2] 臧 华,刘 钊.钢管混凝土桥墩的应用与研究[J].中国工程科学,2007,9(7):71-75. ZANG Hua, LIU Zhao. Application and research on concrete-filled steel bridge piers[J]. Engineering Science, 2007, 9(7): 71-75.(in Chinese)
[3] BIN Cheng, SHENG Xiang, WEI Zuo, et al. Behaviors of partially concrete-filled welded integral T-joints in steel truss bridges[J]. Engineering Structures, 2018, 166: 16-30
[4] TANG Yun-chao, LI Li-juan, FENG Wen-xian, et al. Study of seismic behavior of recycled aggregate concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2018, 148: 1-15.
[5] HAN Lin-hai, HOU Chuan-chuan, XU Wu. Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: numerical study[J]. Journal of Constructional Steel Research, 2018, 149: 225-238.
[6] AGUIRRE D A, KOWALSKY M J, NAU J M, et al. Seismic performance of reinforced concrete filled steel tube drilled shafts with inground plastic hinges[J]. Engineering Structures, 2018, 165: 106-119.
[7] ZENZAI S, SHIMIZU S, CHIKAHIRO Y. Behavior of a concrete filled steel box column with considering detachment under seismic load[J]. Thin-Walled Structures, 2018, 124: 98-106.
[8] KITADA T. Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan[J]. Engineering Structures, 1998, 20(4-6): 347-354.
[9] KAWANOA, SAKINO K. Seismic resistance of CFT trusses[J]. Engineering Structures, 2003, 25(5): 607-619.
[10] AVAL S B B, SAADEGHVAZIRI M A, GOLAFSHANI A A. Comprehensive composite inelastic fiber element for cyclic analysis of concrete-filled steel tube columns[J]. Journal of Engineering Mechanics, 2002, 128(4): 428-437.
[11] HAJJAR J F, GOURLEY B C. Representation of concrete-filled steel tube cross-section strength[J]. Journal of structural engineering, 1996, 122(11): 1327-1336
[12] HAJJAR J F, GOURLEY B C. A cyclic nonlinear model for concrete-filled tubes. I: formulation[J]. Journal of Structural Engineering, 1997, 123(6): 736-744.
[13] 韩林海,陶 忠,闫维波.圆钢管混凝土构件弯矩-曲率滞回特性研究[J].地震工程与工程振动,2000,20(3):50-59. HAN Lin-hai, TAO Zhong, YAN Wei-bo. Research on moment-curvature hysteretic behaviors of concrete filled circular steel tubes[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(3): 50-59.(in Chinese)
[14] 韩林海,陶 忠,闫维波.圆钢管混凝土压弯构件荷载-位移滞回性能分析[J].地震工程与工程振动,2001,21(1):64-73. HAN Lin-hai, TAO Zhong, YAN Wei-bo. Hysteresis behaviors of concrete filled steel tubular beam-columns with circular sections[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(1): 64-73.(in Chinese)
[15] 韩林海,陶 忠.方钢管混凝土柱的延性系数[J].地震工程与工程振动,2000,20(4):56-65. HAN Lin-hai, TAO Zhong. Ductility coefficient of concrete filled steel tubular columns with square sections[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 56-65.(in Chinese)
[16] 韩林海,杨有福,游经团,等.圆钢管混凝土压弯构件滞回性能的试验研究与理论分析[J].中国公路学报,2004,17(3):51-56. HAN Lin-hai, YANG You-fu, YOU Jing-tuan, et al. Experimental and theoretical studies on the hysteretic behavior of beam-columns of concrete-filled circular steel tubes[J]. China Journal of Highway and Transport, 2004, 17(3): 51-56.(in Chinese)
[17] HAN Lin-hai, YANG You-fu, TAO Zhong. Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading[J]. Thin-Walled Structures, 2003, 41(9): 801-833
[18] 张素梅,刘界鹏,王玉银,等.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3):9-18. ZHANG Su-mei, LIU Jie-peng, WANG Yu-yin, et al. Hysteretic behavior of biaxially loaded high strength concrete-filled square hollow section beam-columns[J]. Journal of Building Structures, 2005, 26(3): 9-18.(in Chinese)
[19] 马恺泽,梁兴文,李 斌.方钢管高强混凝土柱恢复力模型研究[J].世界地震工程,2011,27(1):54-59. MA Kai-ze, LIANG Xing-wen, LI Bin. Research on the restoring force model of high strength concrete-filled rectangular steel tubular columns[J]. World Earthquake Engineering, 2011, 27(1): 54-59.(in Chinese)
[20] 邓萱奕.钢管混凝土格构柱抗震性能试验研究[D].长沙:中南大学,2012. DENG Xuan-yi. Study on the seismic performance of concrete filled steel tubular lattice column[D]. Changsha: Central South University, 2012.(in Chinese)
[21] 罗 瑶.四肢钢管混凝土格构柱抗震性能研究[D].长沙:中南大学,2013. LUO Yao. Studies on the seismic performance of four-tube concrete filled steel tubular laced columns[D]. Changsha: Central South University, 2013.(in Chinese)
[22] 吕银花.平缀管式等截面钢管混凝土格构柱滞回性能研究[D].福州:福州大学,2015. LYU Yin-hua. Studies on hysteretic behavior of uniform section concrete filled steel tubular laced columns with flat lacing tube[D]. Fuzhou: Fuzhou University, 2015.(in Chinese)
[23] 袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析[J].工程力学,2016,33(10):226-235. YUAN Hui-hui, WU Qing-xiong, CHEN Bao-chun, et al. A seismic performance test and FEM analysis of uniform sectional CFST lattice column with flat lacing tubes[J]. Engineering Mechanics, 2016, 33(10): 226-235.(in Chinese)
[24] 袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱荷载-位移骨架曲线计算方法[J].工程力学,2016,33(12):206-216. YUAN Hui-hui, WU Qing-xiong, CHEN Bao-chun, et al. Calculation method of load-displacement skeleton curve for uniform sectional CFST lattice column with flat lacing tube[J].Engineering Mechanics, 2016, 33(12): 206-216.(in Chinese)
[25] 欧智菁,陈盛富.等截面钢管混凝土格构柱骨架曲线的统一算法[J].重庆大学学报,2017,40(2):91-100. OU Zhi-jing, CHEN Sheng-fu. A uniform calculation method of the skeleton curve of equal sectional concrete filled steel tube columns[J]. Journal of Chongqing University, 2017, 40(2): 91-100.(in Chinese)
[26] 曹 艳,陈伯望,贺 冉,等.自密实方圆钢管混凝土四肢格构柱拟静力试验对比研究[J].湖南工程学院学报,2014,24(1):77-81. CAO Yan, CHEN Bo-wang, HE Ran, et al. Self-compacting concrete filled square steel tubes limb lattice column quasi static test research[J]. Journal of Hunan Institute of Engineering, 2014, 24(1): 77-81.(in Chinese)
[27] 陈伯望,邹艳花,唐 楚,等.四肢方圆钢管混凝土格构柱低周反复加载试验研究[J].土木工程学报,2014,47(增2):108-112. CHEN Bo-wang, ZOU Yan-hua, TANG Chu, et al. Contrast research on square and circular CFST laced columns pseudo-static test[J]. China Civil Engineering Journal, 2014, 47(S2): 108-112.(in Chinese)
[28] 蒋丽忠,黄 志,陈 善,等.钢管混凝土格构柱-组合箱梁节点抗震性能试验研究[J].振动与冲击,2014,33(18):156-163. JIANG Li-zhong, HUANG Zhi, CHEN Shan, et al. Tests for aseismic behavior of connection joints composed of concrete-filled steel tubular lattice columns and composite box girders[J]. Journal of Vibration and Shock, 2014, 33(18): 156-163.(in Chinese)
[29] 黄 蕾.变截面钢管混凝土格构柱极限承载力研究[D].福州:福州大学,2015. HUANG Lei. Research on ultimate load-carrying capacity of concrete filled steel tubular battened columns with variable cross-section[D]. Fuzhou: Fuzhou University, 2015.(in Chinese)
[30] 欧智菁,晏巧玲,薛建阳,等.变截面钢管混凝土格构柱轴压极限承载力[J].重庆大学学报,2016,39(5):114-120. OU Zhi-jing, YAN Qiao-ling, XUE jian-yang, et al. The ultimate load carrying capacity of variable cross-sectional concrete filled steel tubular laced columns on axial load[J]. Journal of Chongqing University, 2016, 39(5): 114-120.(in Chinese)
[31] 欧智菁,陈盛富,吴庆雄,等.变截面钢管混凝土格构柱抗震性能试验研究[J].建筑结构学报,2018,39(3):77-83. OU Zhi-jing, CHEN Sheng-fu, WU Qing-xiong, et al. Experimental research on seismic performance of variable cross-sectional concrete filled steel tubular laced columns[J]. Journal of Building Structures, 2018, 39(3): 78-93.(in Chinese)
[32] 陈盛富.四肢变截面钢管混凝土格构柱抗震性能研究[D].福州:福建工程学院,2017. CHEN Sheng-fu. Research on seismic performance of four-tube variable cross-sectional concrete filled steel tubular laced columns[D]. Fuzhou: Fujian University of Technology, 2017.(in Chinese)

Memo

Memo:
-
Last Update: 2018-05-30