|Table of Contents|

Interlaminar interface shear slip characteristics of composite pavement(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2018年04期
Page:
1-11
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Interlaminar interface shear slip characteristics of composite pavement
Author(s):
CAO Ming-ming12 LU Yang2 HUANG Wan-qing1 LI Yi-ming2 WU Zhi-yong1
1. Sichuan Communication Surveying and Design Institute, Chengdu 61004l, Sichuan, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Keywords:
pavement engineering composite pavement 45°shear test waterproof cohesive layer shear strength interlaminar slip characteristic residual shear strength
PACS:
U416.224
DOI:
-
Abstract:
Based on the composite pavement test section of Nandaliang Expressway, the exposed bone ratios and texture depths of different roughened interfaces were tested, and 45° shear tests were carried out with core samples drilling in the field test section. Combined with 45° shear test results and the mechanical properties in the interlaminar shear process, the interlaminar shear and deformation curve was divided into four stages: elastic stage, failure stage, shear strength reduction phase, and residual phase. The interlaminar shear and deformation behavior was evaluated by using the texture depth, peak shear strength, relative interlaminar slip displacement corresponding to the peak shear strength, and residual shear strength. The effects of interface roughness mode, types and amounts of waterproof cohesive materials, temperature, and loading rates on the interlaminar shear and deformation characteristics of composite pavement were analyzed. Test result shows that the texture depth of the chiseling interface(1.17 mm)is greater than that of the sand-blasting interface(0.37 mm). Combined with the interlaminar mechanical property differences of different roughened interfaces in the shearing process, the composite specimen formed at the chiseling interface has better shear resistance performance than that formed at the sand-blasting interface. The relative interlaminar sliding displacement corresponding to the peak shear strength of the chiseling interface(0.19-0.79 mm)is larger than that of the sand-blasting interface(0.16-0.33 mm)with the same waterproof cohesive materials. Moreover, the effect of waterproof cohesive materials on the peak shear strength and residual shear strength is greater than that of the interlaminar relative slip displacement corresponding to the peak shear strength. As a whole, the effect of temperature on interlaminar shear and deformation characteristics is remarkable, and the peak shear strength at 5 ℃ is 7.0-10.0 times of the value at 40 ℃. The test conditions have a great influence on the interlaminar shear strength, and the interlaminar peak shear strength measured at 50 mm·min-1 loading rate is 1.9-3.5 times of the value measured at 5 mm·min-1 loading rate. Thus, the chiseling roughened method is more helpful to improve the interlaminar shear strength of the composite pavement, and the multi-index should be used to evaluate the interlaminar shear and deformation characteristics of the composite pavement. 4 tabs, 10 figs, 30 refs.

References:


[1] 李明国.混凝土梁桥沥青铺装结构分析与材料优化研究[D].西安:长安大学,2010. LI Ming-guo. Structure analysis and material optimization for concrete beam bridge asphalt mixture deck[D]. Xi'an: Chang'an University, 2010.(in Chinese)
[2] KHWEIR K, FORDYCE D. Influence of layer bonding on the prediction of pavement life[J]. Transport, 2003, 156(2): 73-83.
[3] 黄 优,刘朝晖,李 盛,等.不同层间结合状态下刚柔复合式路面的剪应力分析[J].公路交通科技,2015,32(6):32-38,61. HUANG You, LIU Zhao-hui, LI Sheng, et al. Analysis of shear stress of rigid-flexible composite pavement under different interlaminar bonding conditions[J]. Journal of Highway and Transportation Research and Development, 2015, 32(6): 32-38, 61.(in Chinese)
[4] 乔 志,王选仓,张志芳,等.半刚性基层双层连续摊铺层间结合状态[J].交通运输工程学报,2016,16(3):28-34. QIAO Zhi, WANG Xuan-cang, ZHANG Zhi-fang, et al. Interlayer combination state of double-layer continuous paving semi-rigid base[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 28-34.(in Chinese)
[5] CASTRO M. Structural design of asphalt pavement on concrete bridges[J]. Canadian Journal of Civil Engineering, 2004, 31(4): 695-702.
[6] KRUNTCHEVA M R, COLLOP A C, THOM N H. Effect of bond condition on flexible pavement performance[J]. Journal of Transportation Engineering, 2005, 131(11): 880-888.
[7] RAAB C, PARTL M N. Interlayer bonding of binder, base and subbase layers of asphalt pavements: long-term performance[J]. Construction and Building Materials, 2009, 23(8): 2926-2931.
[8] WEST R C, ZHANG Jing-na, MOORE J. Evaluation of bond strength between pavement layers[R]. Auburn: Auburn University, 2005.
[9] 张 娟.水泥混凝土桥面防水粘结层性能研究[D].西安:长安大学,2008. ZHANG Juan. Study on the waterproofing and bonding layer of concrete bridge deck[D]. Xi'an: Chang'an University, 2008.(in Chinese)
[10] 王火明.刚柔性路面界面层强度特性研究[D].重庆:重庆交通大学,2008. WANG Huo-ming. Research on strength characteristics of the interface layer of rigid-flexible pavement[D]. Chongqing: Chongqing Jiaotong University, 2008.(in Chinese)
[11] ZHEN Leng, AL-QADI I L, CARPENTER S H, et al. Interface bonding between hot-mix asphalt and various Portland cement concrete surfaces: assessment of accelerated pavement testing and measurement of interface strain[J]. Transportation Research Record, 2009(2127): 20-28.
[12] ZHEN Leng, OZER H, AL-QADI I L, et al. Interface bonding between hot-mix asphalt and various Portland cement concrete surfaces: laboratory assessment[J]. Transportation Research Record, 2008(2057): 46-53.
[13] MOHAMMAD L N, BAE A, ELSEIFI M A, et al. Effects of pavement surface type and sample preparation method on tack coat interface shear strength[J]. Transportation Research Record, 2010(2180): 93-101.
[14] 罗志刚,曾 俊,王随原.界面污染对半刚性基层与沥青混凝土面层层间黏结性能影响的试验研究[J].公路,2011(1):109-113. LUO Zhi-gang, ZENG Jun, WANG Sui-yuan. Experiment and study on influence of interface pollution on interlaminar bonding performance between semi-rigid base and asphalt concrete course[J]. Highway, 2011(1): 109-113.(in Chinese)
[15] 曹明明,黄晚清,陆 阳,等.复合式路面层间剪切性能试验和评价方法[J].公路交通科技,2018,35(4):40-48. CAO Ming-ming, HUANG Wan-qing, LU Yang, et al. Test and evaluation method of interlaminar shear property of composite pavement[J]. Journal of Highway and Transportation Research and Development, 2018, 35(4): 40-48.(in Chinese)
[16] 李忠林.水泥砼桥面铺装结构与层间界面力学特性研究[D].重庆:重庆交通大学,2009. LI Zhong-lin. Research on cement concrete bridge deck interface layer structure and mechanical properties[D]. Chongqing: Chongqing Jiaotong University, 2009.(in Chinese)
[17] 裴建中.桥面柔性防水材料技术性能研究[D].西安:长安大学,2001. PEI Jian-zhong. Study on technical performance of flexible waterproof material for bridge deck[D]. Xi'an: Chang'an University, 2001.(in Chinese)
[18] 刘 丽.沥青路面层间处治技术研究[D].西安:长安大学,2008. LIU Li. Study on the technology performance of asphalt pavement layer interfaces[D]. Xi'an: Chang'an University, 2008.(in Chinese)
[19] 田 帅,张铁志,李 野,等.加铺碳纤维桥面板与桥面铺装结构层间剪切试验研究[J].武汉理工大学学报,2011,33(6):80-84. TIAN Shuai, ZHANG Tie-zhi, LI Ye, et al. Research on shear test of the interface between bridge deck wit carbon fiber and deck pavement[J]. Journal of Wuhan University of Technology, 2011, 33(6): 80-84.(in Chinese)
[20] CHEN J S, HUANG C C. Effect of surface characteristics on bonding properties of bituminous tack coat[J]. Transportation Research Record, 2010(2180): 142-149.
[21] 张金荣.长寿命沥青路面层间处治技术研究[D].西安:长安大学,2008. ZHANG Jin-rong. Study on technology of interlayer treatment for perpetual asphalt pavement[D]. Xi'an: Chang'an University, 2008.(in Chinese)
[22] SANTAGATA F A, FERROTTI G, PARTL M N, et al. Statistical investigation of two different interlayer shear test methods[J]. Materials and Structures, 2009, 42(6): 705-714.
[23] UZAN J, LIVNEH M, ESHED Y. Investigation of adhesion properties between asphaltic-concrete layers[C]∥TRB. Association of Asphalt Paving Technologists Proceedings. Washington DC: TRB, 1978: 495-521.
[24] 徐鸥明,韩 森,于静涛.层间界面对混凝土桥面铺装结构性能的影响[J].长安大学学报:自然科学版,2009,29(5):17-20,53. XU Ou-ming, HAN Sen, YU Jing-tao. Effect of interlayer interface on structural performance of concrete bridge deck pavement [J]. Journal of Chang'an University:Natural Science Edition, 2009, 29(5): 17-20, 53.(in Chinese)
[25] XU Qin-wu, ZHOU Qing-hua, MEDINA C, et al. Experimental and numerical analysis of a waterproofing adhesive layer used on concrete-bridge decks[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 525-534.
[26] YILDIRIM Y, SMIT A F, KORKMAZ A. Development of a laboratory test procedure to evaluate tack coat performance[J]. Turkish Journal of Engineering and Environmental Sciences, 2005, 29(4): 195-205.
[27] 冯德成,宋 宇.沥青路面层间结合状态试验与评价方法研究[J].哈尔滨工业大学学报,2007,39(4):627-631. FENG De-cheng, SONG Yu. Study of test and evaluation method on interfacial combining state of asphalt pavement[J]. Journal of Harbin Institute of Technology, 2007, 39(4): 627-631.(in Chinese)
[28] MO Lian-tong, HUURMAN M, WU Shao-peng, et al. Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar[J]. Materials and Design, 2009, 30(1): 170-179.
[29] 李 盛,刘朝晖,张景怡,等.刚柔复合式路面层间沥青材料路用性能试验评价[J].公路交通科技,2013,30(11):7-12,67. LI Sheng, LIU Zhao-hui, ZHANG Jing-yi, et al. Test evaluation of pavement performance of interlaminar asphalt material for rigid-flexible composite pavement[J]. Journal of Highway and Transportation Research and Development, 2013, 30(11): 7-12, 67.(in Chinese)
[30] 纪 伦,李云良,任俊达,等.桥面铺面防水粘结层胶结材料洒布量的确定方法[J].哈尔滨工业大学学报,2014,46(4):57-62. JI Lun, LI Yun-liang, REN Jun-da, et al. Method of determining the spraying amount of waterproof binder for bridge deck pavement[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 57-62.(in Chinese)

Memo

Memo:
-
Last Update: 2018-08-30