[1] CHEVALLIER E, LECLERCQ L. Do microscopic merging models reproduce the observed priority sharing ratio in congestion?[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(3): 328-336.
[2] BONNIN S, WEISSWANGE T H, KUMMERT F, et al. Accurate behavior prediction on highways based on a systematic combination of classifiers[C]∥IEEE. 2013 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 242-249.
[3] 左 康,刘启远,孙 剑.城市快速路匝道汇入行为建模及仿真[J].系统仿真学报,2017,29(9):1895-1906. ZUO Kang, LIU Qi-yuan, SUN jian. Modeling and simulation of merging behavior at urban expressway on-ramp[J]. Journal of System Simulation, 2017, 29(9): 1895-1906.(in Chinese)
[4] 臧志刚,陆 锋,李海峰,等.7种微观交通仿真系统的性能评价与比较研究[J]. 交通与计算机,2007,25(1):66-70. ZANG Zhi-gang, LU Feng, LI Hai-feng, et al. Performance evaluation and comparison of seven microscopic transportation simulation systems[J]. Computer and Communications, 2007, 25(1): 66-70.(in Chinese)
[5] SONG Rui, SUN Jian. Calibration of a micro-traffic simulation model with respect to the spatial-temporal evolution of expressway on-ramp bottlenecks[J]. Simulation: Transactions of the Society for Modeling and Simulation International, 2016, 92(6): 535-546.
[6] SUN Jie, LI Zhi-peng, SUN Jian. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors[J]. Physica A: Statistical Mechanics and its Applications, 2015, 440: 57-67.
[7] 孙 剑,胡家琦,孙 杰.城市快速路交织区通行能力估计模型[J].中国公路学报,2016,29(4):114-122. SUN Jian, HU Jia-qi, SUN Jie. Capacity estimation model on weaving segments of urban expressway[J]. China Journal of Highway and Transport, 2016, 29(4): 114-122.(in Chinese)
[8] 刘好德,郑进炫,孙 剑,等.基于多层统计模型的城市快速路汇入区通行能力影响因素分析[J].公路与汽运,2016(5):16-21,24. LIU Hao-de, ZHENG Jin-xuan, SUN Jian, et al. Capacity influence factors analysis on merging segments of urban expressway based on multilayer statistical models[J]. Highways and Automotive Applications, 2016(5): 16-21, 24.(in Chinese)
[9] YANG Qi, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129.
[10] HOU Yi, EDARA P, SUN C. Modeling mandatory lane changing using bayes classifier and decision trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 647-655.
[11] SUN Jian, OUYANG Ji-xiang, YANG Jian-hao. Modeling and analysis of merging behavior at expressway on-ramp bottlenecks[J]. Transportation Research Record, 2014(2421): 74-81.
[12] MENG Qiang, WENG Jin-Xian. Cellular automata model for work zone traffic[J]. Transportation Research Record, 2010(2188): 131-139.
[13] SUN Jian, SUN Jie, CHEN Peng. Use of support vector machine models for real-time prediction of crash risk on urban expressways[J]. Transportation Research Record, 2014(2432): 91-98.
[14] 孙 剑, 蒋 舜, 欧阳吉祥.城市快速路驶入匝道瓶颈车辆汇入行为[J].同济大学学报:自然科学版,2015,43(4):549-554. SUN Jian, JIANG Shun, OUYANG Ji-xiang. Modeling the vehicle merging behaviors at urban expressway on-ramp bottlenecks[J]. Journal of Tongji University: Natural Sicence, 2015, 43(4): 549-554.(in Chinese)
[15] KUMAR P, PERROLLAZ M, LEF S, et al. Learning-based approach for online lane change intention prediction[C]∥IEEE. 2013 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 797-802.
[16] WANG Er-gen, SUN Jian, JIANG Shun, et al. Modeling the various merging bahaviors at expressway on-ramp bottlenecks using support vector machine models[J]. Transportation Research Procedia, 2017, 25: 1327-1341.
[17] HOU Yi, EDARA P, SUN C. A genetic fuzzy system for modeling mandatory lane changing[C]∥IEEE. 2012 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 1044-1048.
[18] HOU Yi, EDARA P, SUN C. Situation assessment and decision making for lane change assistance using ensemble learning methods[J]. Expert Systems with Applications, 2015, 42(8): 3875-3882.
[19] MARCZAK F, DAAMEN W, BUISSON C. Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory[J]. Procedia-Social and Behavioral Sciences, 2013, 80: 678-697.
[20] MIGLETZ J, GRAHAM J L, ANDERSON I B, et al. Work zone speed limit procedure[J]. Transportation Research Record, 1999(1657): 24-30.
[21] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[22] REIF D M, MOTSINGER A A, MCKINNEY B A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]∥IEEE. 3rd Computational Intelligence in Bioinformatics and Computational Biology Symposium. New York: IEEE, 2006: 171-178.
[23] SUN Jie, SUN Jian. A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 176-186.
[24] 周 涛,翟长旭,高志刚.基于贝叶斯网络的高速公路预警系统研究[J].公路工程,2007,32(4):163-166. ZHOU Tao, ZHAI Chang-xu, GAO Zhi-gang. Study on the forewarning system of freeway based on Bayesian networks[J]. Highway Engineering, 2007, 32(4): 163-166.(in Chinese)
[25] DING Wei, SONG P X K. EM algorithm in Gaussian copula with missing data[J]. Computational Statistics and Data Analysis, 2016, 101: 1-11.