[1] BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned?[J]. Lecture Notes in Computer Science, 2015, 8926: 613-627.
[2] DIXIT R S, GANDHE S T. Pedestrian detection system for ADAS using Friendly ARM[C]∥IEEE. 2015 International Conference on Energy Systems and Applications. New York: IEEE, 2015: 557-560.
[3] GERóNIMO D, LóPEZ A M, SAPPA A D, et al. Survey of pedestrian detection for advanced driver assistance systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239-1258.
[4] HAJEK W, GAPONOVA I, FLEISCHER K H, et al. Workload-adaptive cruise control—a new generation of advanced driver assistance systems[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 20: 108-120.
[5] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥IEEE. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
[6] WANG Xiao-yu, HAN T X, YAN Shui-cheng. An HOG-LBP human detector with partial occlusion handling[C]∥IEEE. 2009 IEEE International Conference on Computer Vision. New York: IEEE, 2009: 32-39.
[7] FELZENSZWALB P, GIRSHICK R, MCALLESTER D, et al. Visual object detection with deformable part models[J]. Communications of the ACM, 2013, 56(9): 97-105.
[8] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
[9] OUYANG Wan-li, ZENG Xing-xu, WANG Xiao-gang. Single-pedestrian detection aided by two-pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1875-1889.
[10] DOLLáR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
[11] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]∥IEEE. 2008 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2008: 1-8.
[12] ZHANG Xiao-wei, HU Hai-miao, JIANG Fan, et al. Pedestrian detection based on hierarchical co-occurrence model for occlusion handling[J]. Neurocomputing, 2015, 168: 861-870.
[13] NEHANIV C L, DAUTENHAHN K, KUBACKI J, et al. A methodological approach relating the classification of gesture to identification of human intent in the context of human-robot interaction[C]∥IEEE. 2005 IEEE International Workshop on Robots and Human Interactive Communication. New York: IEEE, 2005: 371-377.
[14] CHO H, RYBSKI P E, BAR-HILLEL A, et al. Real-time pedestrian detection with deformable part models[C]∥IEEE. 2012 Intelligent Vehicles Symposium. New York: IEEE, 2012: 1035-1042.
[15] CHEN Xiao-feng, HENRICKSON K, WANG Yin-hai. Kinect-based pedestrian detection for crowded scenes[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(3): 229-240.
[16] CHENG Hong, ZHENG Nan-ning, QIN Jun-jie. Pedestrian detection using sparse Gabor filter and support vector machine[C]∥IEEE. 2005 Intelligent Vehicles Symposium. New York: IEEE, 2005: 583-587.
[17] WU Si, LAGANIèRE R, PAYEUR P. Improving pedestrian detection with selective gradient self-similarity feature[J]. Pattern Recognition, 2015, 48(8): 2364-2376.
[18] ZHANG Shan-shan, BENENSON R, SCHIELE B. Filtered channel features for pedestrian detection[C]∥IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1751-1760.
[19] TIAN Yong-long, LUO Ping, WANG Xiao-gang, et al. Deep
learning strong parts for pedestrian detection[C]∥IEEE. 2015 IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1904-1912.
[20] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
[21] DEMIR B, BRUZZONE L. Fast and accurate image classification with histogram based features and additive kernel SVM[C]∥IEEE. 2015 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2015: 2350-2353.
[22] MAJI S, BERG A C, MALIK J. Efficient classification for additive kernel SVMs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 66-77.
[23] 孙 锐,陈 军,高 隽.基于显著性检测与HOG-NMF特征的快速行人检测方法[J].电子与信息学报,2013,35(8):1921-1926.
SUN Rui, CHEN Jun, GAO Jun. Fast pedestrian detection based on saliency detection and HOG-NMF features[J]. Journal of Electronics and Information Technology, 2013, 35(8): 1921-1926.(in Chinese)
[24] WU Jian-xin, GEYER C, REHG J M. Real-time human detection using contour cues[C]∥IEEE. 2011 IEEE International Conference on Robotics and Automation. New York: IEEE, 2011: 860-867.
[25] 曾波波,王贵锦,林行刚.基于颜色自相似度特征的实时行人检测[J].清华大学学报:自然科学版,2012,52(4):571-574.
ZENG Bo-bo, WANG Gui-jin, LIN Xing-gang. Color self-similarity feature based real-time pedestrian detection[J]. Journal of Tsinghua University: Science and Technology, 2012, 52(4): 571-574.(in Chinese)