|Table of Contents|

Service performance prediction model of tunnel structure in alpine freezing-thawing environment(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2016年04期
Page:
133-140
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Service performance prediction model of tunnel structure in alpine freezing-thawing environment
Author(s):
WANG Zhu1 DONG Chang-song1 HAN Chang-ling1 LI Yan2
1. State Key Laboratory of Road Engineering Safety and Health in Cold and High-Altitude Regions, CCCC First Highway Consultants Co., Ltd., Xi’an 710075, Shaanxi, China; 2. School of Civil Engineering, Tongji University, Shanghai 200092, China
Keywords:
tunnel engineering service performance concrete freezing-thawing deterioration finite element method load structure method
PACS:
U451.5
DOI:
-
Abstract:
In order to analyze the influence of alpine freezing-thawing environment with large temperature difference on the long-term service performance of highway tunnel lining structure, the temperature variation law of Jiangluling Tunnel portal was obtained by field test method, the calculation formula for the mechanical property deterioration of lining concrete in freezing-thawing environment was obtained based on indoor freezing-thawing cycle test, and the load structure method was used to establish the spatial and temporal prediction model of service performance for lining structure in alpine freezing-thawing environment. Research result shows that after the insulation layer with the thickness of 5 cm and the thermal conductivity of 0.03 W·(m·℃)-1 is laid, the number of equivalent indoor freezing-thawing cycles for Jiangluling Tunnel in one year decreases from 8 to 0.32. When there is no insulation layer and concrete is saturated, 5, 10, 15, 20 years later, the safety coefficients of arch foot section respectively decrease by 0.6%, 23.7%, 41.1%, 69.8% compared to the original service time. After 20 years of service, the safety coefficient of second lining cannot meet structure load requirement. After the insulation layer with the thickness of 5 cm and the thermal conductivity of 0.03 W·(m·℃)-1 is laid, the safety coefficient of second lining still meet the load requirement after 100 years of service. The severe degree of freezing-thawing cycles has significant influence on the long-term service performance of lining structure, and the insulation layer can effectively improve the freezing-thawing environment of concrete. 12 tabs, 6 figs, 27 refs.

References:

[1] COLLINS A R. The destruction of concrete by frost[J]. Journal of the Institution of Civil Engineers, 1944, 23(1): 29-41.
[2] LITVAN G G. Frost action in cement paste[J]. Materials and Structures, 1973, 6(4): 293-298.
[3] PENTTALA V, AL-NESHAWY F. Stress and strain state of concrete during freezing and thawing cycles[J]. Cement and Concrete Research, 2002, 32(9): 1407-1420.
[4] CAI H, LIU X. Freeze-thaw durability of concrete: ice formation process in pores[J]. Cement and Concrete Research, 1998, 28(9): 1281-1287.
[5] SHANG H S, SONG Y P. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles[J]. Cement and Concrete Research, 2006, 36(10): 1857-1864.
[6] HASAN M, UEDA T, SATO Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading[J]. Journal of Materials in Civil Engineering, 2008, 20(1): 37-45.
[7] PHEERAPHAN T, LEUNG C K Y. Freeze-thaw durability of microwave cured air-entrained concrete[J]. Cement and Concrete Research, 1997, 27(3): 427-435.
[8] 覃丽坤,宋玉普,陈浩然,等.冻融循环对混凝土力学性能的影响[J].岩石力学与工程学报,2005,24(增1):5048-5053.QIN Li-kun, SONG YU-pu, CHEN Hao-ran, et al. Influence of freezing and thawing cycles on mechanical properties of concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S1): 5048-5053.(in Chinese)
[9] 曹大富,富立志,杨忠伟,等.冻融循环下砼力学性能与相对动弹性模量关系[J].江苏大学学报:自然科学版,2012,33(6):721-725.CAO Da-fu, FU Li-zhi, YANG Zhong-wei, et al. Relationship between mechanical properties and relative dynamic elasticity modulus of concrete after freeze-thaw cycles[J]. Journal of Jiangsu University: Natural Science Edition, 2012, 33(6): 721-725.(in Chinese)
[10] 曹秀丽,曹志翔,喻 骁.冻融循环对混凝土质量损失及相对动弹模量影响的试验研究[J].铁道建筑,2013(3):125-127.CAO Xiu-li, CAO Zhi-xiang, YU Xiao. Test research on influence of freeze-thaw cycle to concrete quality loss and relative dynamic elastic modulus[J]. Railway Engineering, 2013(3): 125-127.(in Chinese)
[11] 覃丽坤,宋玉普,陈浩然,等.双轴拉压混凝土在冻融循环后的力学性能及破坏准则[J].岩石力学与工程学报,2005,24(10):1740-1745.QIN Li-kun, SONG Yu-pu, CHEN Hao-ran, et al. Mechanical property and failure criterion of concrete under biaxial tension and compression after freeze-thaw cycling[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1740-1745.(in Chinese)
[12] 唐光普,刘西拉,施士升.冻融条件下混凝土破坏面演化模型研究[J].岩石力学与工程学报,2006,25(12):2572-2578.TANG Guang-pu, LIU Xi-la, SHI Shi-sheng. Evolution model of concrete failure surface under freeze-thaw condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2572-2578.(in Chinese)
[13] 罗彦斌,陈建勋,段献良.C20喷射混凝土冻融力学试验[J].中国公路学报,2012,25(5):113-119.LUO Yan-bin, CHEN Jian-xun, DUAN Xian-liang. Mechanical testing on frozen-thawy C20 shotcrete[J]. China Journal of Highway and Transport, 2012, 25(5): 113-119.(in Chinese)
[14] 董长松,张晓旭,张 弛,等.多年冻土区隧道衬砌混凝土冻融循环试验研究[J].公路,2015(11):244-247.DONG Chang-song, ZHANG Xiao-xu, ZHANG Chi, et al. Test and research on freeze-thaw cycle of tunnel lining concrete in permafrost regions[J]. Highway, 2015(11): 244-247.(in Chinese)
[15] 项 伟,刘 珣.冻融循环条件下岩石-喷射混凝土组合试样的力学特性试验研究[J].岩石力学与工程学报,2010,29(12):2510-2521.XIANG Wei, LIU Xun. Experimental study of mechanical properties of combined specimen with rock and shotcrete under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2510-2521.(in Chinese)
[16] 夏才初,范东方,韩常领.寒区隧道不同类型冻土段隔热(保温)层铺设厚度计算方法[J].中国公路学报,2013,26(5):131-139.XIA Cai-chu, FAN Dong-fang, HAN Chang-ling. Piecewise calculation method for insulation layer thickness in cold region tunnels[J]. China Journal of Highway and Transport, 2013, 26(5): 131-139.(in Chinese)
[17] 姚红志,张晓旭,董长松,等.多年冻土区公路隧道保温隔热层铺设方式及材料性能对比分析[J].中国公路学报,2015,28(12):106-113.YAO Hong-zhi, ZHANG Xiao-xu, DONG Chang-song, et al. Comparison analysis on heat insulating material and laying way of highway tunnel in permafrost regions[J]. China Journal of Highway and Transport, 2015, 28(12): 106-113.(in Chinese)
[18] 夏才初,范东方,李志厚,等.隧道多年冻土段隔热层厚度解析计算结果的探讨[J].土木工程学报,2015,48(2):118-124.XIA Cai-chu, FAN Dong-fang, LI Zhi-hou, et al. Discussion on analytical calculation for thermal-insulation layer thickness of tunnel in permafrost area[J]. China Civil Engineering Journal, 2015, 48(2): 118-124.(in Chinese)
[19] 刘西拉,唐光普.现场环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报,2007,26(12):2412-2419.LIU Xi-la, TANG Guang-pu. Research on prediction method of concrete freeze-thaw durability under field environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2412-2419.(in Chinese)
[20] LAI Y M, WU Z, ZHU Y, et al. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels[J]. Cold Regions Science and Technology, 1999, 29(1): 89-96.
[21] LAI Yuan-ming, LIU Song-yu, WU Zi-wang, et al. Approximate analytical solution for temperature fields in cold regions circular tunnels[J]. Cold Regions Science and Technology, 2002, 34(1): 43-49.
[22] TOUTAIN J, BATTAGLIA J L, PRADERE C, et al. Numerical inversion of Laplace transform for time resolved thermal characterization experiment[J]. Journal of Heat Transfer, 2011, 133(4): 1-3.
[23] HAJI-SHEIKH A, BECK J V. Temperature solution in multi-dimensional multi-layer bodies[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1865-1877.
[24] SINGH S, JAIN P K, UDDIN R. Finite integral transform method to solve asymmetric heat conduction in a multilayer annulus with time-dependent boundary conditions[J]. Nuclear Engineering and Design, 2011, 241(1): 144-154.
[25] 赖远明,吴紫汪,张淑娟,等.寒区隧道保温效果的现场观察研究[J].铁道学报,2003,25(1):81-86.LAI Yuan-ming, WU Zi-wang, ZHANG Shu-juan, et al. In-situ observed study for effect of heat preservation in cold regions tunnels[J]. Journal of the China Railway Society, 2003, 25(1): 81-86.(in Chinese)
[26] 夏才初,张国柱,肖素光.考虑衬砌和隔热层的寒区隧道温度场解析解[J].岩石力学与工程学报,2010,29(9):1767-1773.XIA Cai-chu, ZHANG Guo-zhu, XIAO Su-guang. Analytical solution to temperature fields of tunnel in cold region considering lining and insulation layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1767-1773.(in Chinese)
[27] 安光明,杨球玉,杨立建,等.某核电厂岩体动静弹性模量的对比研究[J].岩土力学,2011,32(增1):565-569.AN Guang-ming, YANG Qiu-yu, YANG Li-jian, et al. Comparison between static and dynamic elastic moduli of rock mass in a nuclear power plant[J]. Rock and Soil Mechanics, 2011, 32(S1): 565-569.(in Chinese)

Memo

Memo:
-
Last Update: 2016-08-30