|Table of Contents|

Dynamics model of airdrop process for air transportation cargo(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2016年02期
Page:
125-131
Research Field:
交通运输规划与管理
Publishing date:

Info

Title:
Dynamics model of airdrop process for air transportation cargo
Author(s):
SUN Xiu-xia1 XU Guang-zhi12 LIU Ri1 DONG Wen-han1 QI Peng-chun2
1. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi’an 710038, Shaanxi, China; 2. The 94106 Troops of Chinese PLA, Xi’an 710613, Shaanxi, China
Keywords:
transport aircraft air transportation cargo airdrop dynamic characteristic separated-body modeling dynamic response extraction parachute rigid body model error
PACS:
V217
DOI:
-
Abstract:
In view of the status that the modeling condition of transport aircraft dynamic model in airdrop process for air transportation cargo was too much simplified, which was far away from the real airdrop project, the current airdrop process dynamic models and their applicabilities were systematic researched, and a separated-body modeling method was established. The forces of airdrop cargoes and aircraft were respectively analyzed without attention on the centroid of cargoes and aircraft, which simplified the modeling process and benefited the qualitative analysis of mechanism of the cargoes to the aircraft. In simulation experiment, the reasonability of dynamic model was verified by using the data of a certain-type transport aircraft. In order to verify the irrationality of small disturbance linearization of aerodynamic parameters, the aerodynamic parameters were processed through 3 modes, the corresponding curves of AOA were comparative analyzed. Under the conditions of different support forces, the application points of traction force, guide models, traction force angle models, and the loading positions of cargo, the built dynamic model of airdrop process was quantitative analyzed and compared with existed models. Simulation result shows that with the assumed conditions including the small disturbance linearization of aerodynamic parameters, assuming the cargoes with known motion law as particles, and ignoring the cabin angle, large model errors are introduced. In the missions of big traction ratio and heavy weight airdrop, the influence of the value and direction of traction force on the airdrop dynamic response should be considered. Furthermore, it is significant to install the cargoes near the cabin door of aircraft, which can shorten the moving time of cargoes and reduce the amplitude of interference torque. 9 figs, 24 refs.

References:

[1] 李广义.国外大型军用运输机发展现状与趋势[J].航空制造技术,2005,12(9):36-43.LI Guang-yi. Status and trends of the large foreign military cargo planes[J]. Aeronautical Manufacturing Technology,2005, 12(9): 36-43.(in Chinese)
[2] 步恒祚.浅议我国军用运输机的发展[J].航空科学技术,2006,9(2):3-5.BU Heng-zuo. Brief discussion on the development of Chinese airlifters[J]. Aeronautical Science and Technology, 2006, 9(2): 3-5.(in Chinese)
[3] ZHANG Hui-yuan, SHI Zhong-ke. Variable structure control of catastrophic course in airdropping heavy cargo[J]. Chinese Journal of Aeronautics, 2009, 22(5): 520-527.
[4] ZHANG Jiu-xing, XU Hao-jun, ZHANG Deng-cheng, et al. Safety modeling and simulation of multi-factor coupling heavy-equipment airdrop[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1062-1069.
[5] DESABRAIS K J, RILEY J, SADECK J, et al. Low-cost high-altitude low-opening cargo airdrop systems[J]. Journal of Aircraft, 2012, 49(1): 349-354.
[6] 胡兆丰,肖业伦.货物在货舱内移动时飞机运动的研究方法[R].北京:北京航空学院,1980.HU Zhao-feng, XIAO Ye-lun. Research method for the motion of an aircraft with a cargo moving inside its cabin[R]. Beijing: Beijing Institute of Aeronautics and Astronautics, 1980.(in Chinese)
[7] 傅百先.Y-8飞机连续空投纵向动态分析[J].飞行力学,1993,11(1):80-87.FU Bai-xian. The longitudinal dynamic analysis of Y-8 airplane in continuous air-drop[J]. Flight Dynamics, 1993, 11(1): 80-87.(in Chinese)
[8] CHEN Jie, SHI Zhong-ke. Aircraft modeling and simulation with cargo moving inside[J]. Chinese Journal of Aeronautics, 2009, 22(2): 191-197.
[9] 胡兆丰,肖业伦.“运八”飞机投放重型货物问题的数值计算和模拟试验结果[R].北京:北京航空学院,1980.HU Zhao-feng, XIAO Ye-lun. Numerical calculation and simulation experiment results of Y-8 airplane with heavy cargo airdrop[R]. Beijing: Beijing Institute of Aeronautics and Astronautics, 1980.(in Chinese)
[10] 欧阳绍修,丁重舜.货物在货舱内移动时飞机动态特性的研究[J].飞行力学,1992,10(1):77-86. OUYANG Shao-xiu, DING Chong-shun. The study on the dynamic characteristics of aircraft with cargos moving in its cargo cabin[J]. Flight Dynamics, 1992, 10(1): 77-86.(in Chinese)
[11] 孙宝亭.飞机连投货物实时仿真软件及应用[J].北京航空航天大学学报,1994,20(1):71-77.SUN Bao-ting. A real-time simulation software of sequential airdroping of cargoes from aircraft and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(1): 71-77.(in Chinese)
[12] 柯 鹏,杨春信.货台空投系统的三维动画仿真[J].系统仿真学报,2006,18(5):1253-1256.KE Peng, YANG Chun-xin. Heavy cargo airdrop simulation with 3D animation[J]. Journal of System Simulation, 2006, 18(5): 1253-1256.(in Chinese)
[13] 赖志宏.飞机空投运动响应的数学模型[R].北京:北京航空学院,1986.LAI Zhi-hong. Mathematical model of aircraft airdrop motion response[R]. Beijing: Beijing Institute of Aeronautics and Astronautics, 1986.(in Chinese)
[14] 张 晶,申功璋,杨凌宇.基于逆动力学和重心估计的飞行控制系统设计[J].北京航空航天大学学报,2009,35(11):1315-1319.ZHANG Jing, SHEN Gong-zhang, YANG Ling-yu. Design of flight control system based on inverse dynamics and center of gravity estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1315-1319.(in Chinese)
[15] 杨晓科,杨凌宇,张 晶,等.变重量/重心飞机建模及姿态控制律设计[J].北京航空航天大学学报,2011,37(1):54-57,62.YANG Xiao-ke, YANG Ling-yu, ZHANG Jing, et al. Modeling and attitude control of aircraft with variations in mass or center of gravity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1): 54-57, 62.(in Chinese)
[16] CHEN Jie, MA Cun-bao, SONG Dong. Kinetic characteristics analysis of aircraft during heavy cargo airdrop[J]. International Journal of Automation and Computing, 2014, 11(3): 313-319.
[17] CHEN Jie, SHI Zhong-ke. Flight controller design of transport airdrop[J]. Chinese Journal of Aeronautics, 2011, 24(5): 600-605.
[18] 冯艳丽,史忠科.超低空空投货物出舱过程的动态逆鲁棒控制[J].控制工程,2010,17(5):579-583,586.FENG Yan-li, SHI Zhong-ke. Robust dynamic inversion control for cargo extraction during airdrop at super low attitude[J]. Control Engineering of China, 2010, 17(5): 579-583, 586.(in Chinese)
[19] LIU Ri, SUN Xiu-xia, DONG Wen-han. Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop[J]. Chinese Journal of Aeronautics, 2015, 28(2): 478-487.
[20] LIU Ri, SUN Xiu-xia, DONG Wen-han, et al. Projection-based adaptive backstepping control of a transport aircraft for heavyweight airdrop [J]. International Journal of Aerospace Engineering, 2015, 2015(1): 1-10.
[21] 孙秀霞,常允刚,董文瀚,等.最优控制L1自适应在重装空投纵向控制器设计中的应用[J].控制理论与应用,2015,32(5):598-606.SUN Xiu-xia, CHANG Yun-gang, DONG Wen-han, et al. Design of longitudinal controller for flight in heavy-weight airdrop based on optimal control and L1 adaptive [J]. Control Theory and Applications, 2015, 32(5): 598-606.(in Chinese)
[22] 王亚伟,杨春信,柯 鹏,等.货物空投系统自动脱离锁成功脱离概率分析[J].航空学报,2010,31(2):265-270.WANG Ya-wei, YANG Chun-xin, KE Peng, et al. Probability analysis on parachute ground release for cargo airdrop system[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 265-270.(in Chinese)
[23] 刘晓韵,王 静,李宇明.基于反馈线性化/LQR方法的高超声速飞行器姿控系统设计[J].航天控制,2014,32(4):37-41.LIU Xiao-yun, WANG Jing, LI Yu-ming. The hypersonic vehicle attitude control based on feedback linearization/LQR method[J]. Aerospace Control, 2014, 32(4): 37-41.(in Chinese)
[24] 刘燕斌.高超声速飞行器建模及其先进飞行控制机理的研究[D].南京:南京航空航天大学,2007. LIU Yan-bin. Research on modeling and advanced flight control theories for hypersonic vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.(in Chinese)

Memo

Memo:
-
Last Update: 2016-04-20