[1] LEBLANC D. Fire environments typical of navy ships[D]. London: Worcester Polytechnic Institute, 1998.
[2] CALABRESE F, CORALLO A, MARGHERITA A, et al. A knowledge-based decision support system for shipboard damage control[J]. Expert Systems with Applications, 2012, 39(9): 8204-8211.
[3] OWRUTSKY J C, STEINHURST D A, MINOR C P, et al. Long wavelength video detection of fire in ship compartments[J]. Fire Safety Journal, 2006, 41(4): 315-320.
[4] GOTTUK D T, LYNCH J A, ROSE-PEHRSSON S L, et al. Video image fire detection for shipboard use[J]. Fire Safety Journal, 2006, 41(4): 321-326.
[5] ROSE-PEHRSSON S L, SHAFFER R E, HART S J, et al. Multi-criteria fire detection systems using a probabilistic neural network[J]. Sensors and Actuators B: Chemical, 2000, 69(3): 325-335.
[6] KUO H C, CHANG H K. A real-time shipboard fire-detection system based on grey-fuzzy algorithms[J]. Fire Safety Journal, 2003, 38(4): 341-363.
[7] ROSE-PEHRSSON S L, HART S J, STREET T T, et al. Early warning fire detection system using a probabilistic neural network[J]. Fire Technology, 2003, 39(2): 147-171.
[8] WANG S J, JENG D L,TSAI M T. Early fire detection method in video for vessels[J]. Journal of Systems and Software, 2009, 82(4): 656-667.
[9] WILKINS D C, SNIEZEK J A, TETEM PA, et al. The DC-SCS supervisory control system for ship damage control: volume 1—design overview[R]. Washington DC: Naval Research Laboratory, 2001.
[10] ROSE-PEHRSSON S L, MINOR C P, STEINHURST D A, et al. Volume sensor for damage assessment and situational awareness[J]. Fire Safety Journal, 2006, 41(4): 301-310.
[11] MINOR C P, JOHNSON K J, ROSE-PEHRSSON S L. A full-scale prototype multisensor system for fire detection and situational awareness[C]∥SPIE. Proceedings of SPIE 6571, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications. Bellingham: SPIE, 2007: 11-12.
[12] 李卡麟.基于二叉树的LS-WSVM模型在早期火灾分类上的研究[D].汕头:汕头大学,2010.LI Ka-lin. Research on LS-WSVM based on binary tree in early fire multi-class classification[D]. Shantou: Shantou University, 2010.(in Chinese)
[13] 庄哲民,李卡麟,张新蜂,等.用于早期火灾分类的非线性决策树支持向量机[J].火灾科学,2009,18(4):206-211.ZHUANG Zhe-min, LI Ka-lin, ZHANG Xin-feng, et al. Nonlinear decision tree support vector machine for early fire classification[J]. Fire Safety Science, 2009, 18(4): 206-211.(in Chinese)
[14] 孙福志,于军琪,杨 柳.火灾识别中RS-SVM模型的应用[J].计算机工程与应用,2010,46(3):198-200.SUN Fu-zhi, YU Jun-qi, YANG Liu. Application of RS-SVM model for fire identification[J]. Computer Engineering and Application, 2010, 46(3): 198-200.(in Chinese)
[15] 赵亚琴.基于模糊神经网络的火灾识别算法[J].计算机仿真,2015,32(2):369-373.ZHAO Ya-qin. Forest fire recognition algorithm based on fuzzy neural network[J]. Computer Simulation, 2015, 32(2): 369-373.(in Chinese)
[16] KIM J H, LATTIMER B Y. Real-time probabilistic classification of fire and smoke using thermalimagery for intelligent firefighting robot[J]. Fire Safety Journal, 2015, 72: 40-49.
[17] AKHTAR M J, UTNE I B. Human fatigue’s effect on the risk of maritime groundings—a Bayesian network modeling approach[J]. Safety Science, 2014, 62: 427-440.
[18] GROIS E, WILKINS D C, EARMAN I, et al. The DC-SCS supervisory control system for ship damage control: volume 4—intelligent reasoning[R]. Washington DC: Naval Research Laboratory, 2001.
[19] BAKSH A A, KHAN F, GADAG V, et al. Network based approach for predictive accident modelling[J]. Safety Science, 2015, 80: 274-287.
[20] 刘志军,纪卓尚,林 焰.基于贝叶斯网络的船舶机舱火灾风险分析研究[J].中国造船,2010,51(3):199-205.LIU Zhi-jun, JI Zhuo-shang, LIN Yan. Fire risk analysis in ship engine room based on Bayesian networks[J]. Shipbuilding of China, 2010, 51(3): 199-205.(in Chinese)
[21] WILLIAMS F W, SCHEFFEY J L, HILL S A, et al. Post-flashover fires in shipboard compartments aboard ex-USS Shadwell: phase V—fire dynamics[R]. Washington DC: Naval Research Laboratory, 1999.
[22] WILLIAMS F W, TATEM P A, XUAN N, et al. Results of 1998 DC-ARM/ISFE demonstration tests[R]. Washington DC: Naval Research Laboratory, 2000.
[23] HOOVER J B, WHITEHURST C L, CHANG E B, et al. Final report on fire performance of shipboard electronic space materials[R]. Washington DC: Naval Research Laboratory, 2006.
[24] HOOVER J B, BAILEY J L, WILLAUER H D, et al. Evaluation of submarine hydraulic system explosion and fire hazards[R]. Washington DC: Naval Research Laboratory, 2005.
[25] WONG J T, GOTTUK D T, ROSE-PETHRSSON S L, et al. Results of multi-criteria fire detection system tests[R]. Washington DC: Naval Research Laboratory, 2000.