[1] LI Ying, OTTO C, HAAS N, et al. Component-based track inspection using machine-vision technology[C]∥ACM. Proceedings of the 1st ACM International Conference on Multimedia Retrieval. New York: ACM, 2011: 1-8.
[2] 李奕璠,刘建新,林建辉,等.基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J].交通运输工程学报,2015,15(1):58-65.
LI Yi-fan, LIU Jian-xin, LIN Jian-hui, et al. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65.(in Chinese)
[3] DEUTSCHL E, GASSER C, NIEL A, et al. Defect detection on rail surfaces by a vision based system[C]∥IEEE. Proceeings of 2004 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2004: 507-511.
[4] SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]∥IEEE. Proceedings of the 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. New York: IEEE, 2006: 56-59.
[5] 占 栋,于 龙,肖 建,等.基于激光摄像技术的钢轨磨耗截面积测量方法研究[J].铁道学报,2014,36(4):32-37.
ZHAN Dong, YU Long, XIAO Jian, et al. Study on track wear cross-section measurement utilizing laser-photogrammetric technique[J]. Journal of the China Railway Society, 2014, 36(4): 32-37.(in Chinese)
[6] 化春键,邓朝省,陈 莹.基于双掩模图像差影的工业产品表面缺陷检测[J].传感器与微系统,2015,34(5):127-129,133.
HUA Chun-jian, DENG Chao-sheng, CHEN Ying. Industrial products surface defects detection based on image subtraction with double masks[J]. Transducer and Microsystem Technologies, 2015, 34(5): 127-129, 133.(in Chinese)
[7] 陈旭文,刘桂雄,黄 坚.FPC的图像采集与表面曲向消除方法[J].电子测量与仪器学报,2015,29(6):895-900.
CHEN Xu-wen, LIU Gui-xiong, HUANG Jian. Method of image acquisition and curved surface eliminating for flexible printed circuit[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(6): 895-900.(in Chinese)
[8] TRINH H, HAAS N, LI Ying, et al. Enhanced rail component detection and consolidation for rail track inspection[C]∥IEEE. IEEE Workshop on Applications of Computer Vision. New York: IEEE, 2012: 289-295.
[9] BABENKO P. Visual inspection of railroad tracks[J]. Dissertationsand Theses-Gradworks, 2009, 3(4): 14-16.
[10] LI Qing-yong, REN Sheng-wei. A visual detection system for rail surface defects[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1531-1542.
[11] 李清勇,梁正平,黄雅平,等.缺陷检测的稀疏表示模型及应用[J].计算机研究与发展,2014,51(9):1929-1935.
LI Qing-yong, LIANG Zheng-ping, HUANG Ya-ping, et al. Sparseness representation model for defect detection and its application[J]. Journal of Computer Research and Development, 2014, 51(9): 1929-1935.(in Chinese)
[12] 郭保青,朱力强,史红梅,等.基于单幅图像的轨检车位置校正方法研究[J].铁道学报,2011,33(12):72-77.
GUO Bao-qing, ZHU Li-qiang, SHI Hong-mei, et al. Research on track inspection car position correction method by use of single image[J]. Journal of the China Railway Society, 2011, 33(12): 72-77.(in Chinese)
[13] JESUSSEK M, ELLERMANN K. Fault detection and isolation for a railway vehicle by evaluating estimation residuals[J]. Procedia IUTAM, 2015, 13(1): 14-23.
[14] 唐湘娜,王耀南.铁轨表面缺陷的视觉检测与识别算法[J].计算机工程,2013,39(3):25-30.
TANG Xiang-na, WANG Yao-nan. Visual inspection and classification algorithm of rail surface defect[J]. Computer Engineering, 2013, 39(3): 25-30.(in Chinese)
[15] 刘晓瑞,谢雄耀.基于图像处理的隧道表面裂缝快速检测技术研究[J].地下空间与工程学报,2009,31(增2):1624-1628.
LIU Xiao-rui, XIE Xiong-yao. Rapid crack inspection of tunnel surface based on image processing[J]. Chinese Journal of Underground Space and Engineering, 2009, 31(S2): 1624-1628.(in Chinese)
[16] 吴禄慎,李彧雯,陈华伟,等.基于图像区域划分的轨道缺陷自动检测技术研究[J].激光与红外,2012,42(5):594-599.
WU Lu-shen, LI Yu-wen, CHEN Hua-wei, et al. Research on rail defects automatic detection technology based on image region partition[J]. Laser and Infrared, 2012, 42(5): 594-599.(in Chinese)
[17] 茅正冲,邬 锋.基于图像传感器的铁轨表面缺陷视觉检测算法[J].传感器与微系统,2015,34(9):141-144.
MAO Zheng-chong, WU Feng. Visual detection algorithm for rail surface defects based on image sensor[J]. Transducer and Microsystem Technologies, 2015, 34(9): 141-144.(in Chinese)
[18] 周富强,郭 卉.复杂背景下货车制动梁的快速分割方法[J].光学技术,2013,39(5):387-392.
ZHOU Fu-qiang, GUO Hui. Fast segmentation method for brake beam of freight train under complex background[J]. Optical Technique, 2013, 39(5): 387-392.(in Chinese)
[19] EFTEKHARI M, MOALLEM M, SADRI S, et al. A novel indicator of stator winding inter-turn fault in induction motor using infrared thermal imaging[J]. Infrared Physics and Technology, 2013, 61(5): 330-336.
[20] LI Qing-yong, REN Sheng-wei. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(8): 2189-2199.
[21] GIUSEPPE M G D, TROIANO A, TROISE C, et al. k-means clustering as tool for multivariate geophysical data analysis. An application to shallow fault zone imaging[J]. Journal of Applied Geophysics, 2013, 101(1): 108-115.
[22] VASUKI Y, HOLDEN E J, KOVESI P, et al. Semi-automatic mapping of geological structures using UAV-based photogrammetric data: an image analysis approach[J]. Computers and Geosciences, 2014, 69(4): 22-32.
[23] 莫思特,刘天琪,李碧雄.基于HSL颜色空间的自动白平衡算法[J].四川大学学报:工程科学版,2013,45(增1):95-99.
MO Si-te, LIU Tian-qi, LI Bi-xiong. Research of automatic white balance algorithm based on HSL color space[J]. Journal of Sichuan University: Engineering Science Edition, 2013, 45(S1): 95-99.(in Chinese)
[24] LIANG Zhen, XU Bin-gang, CHI Zhe-ru, et al. Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network[J]. Expert Systems with Applications, 2012, 39(4): 4201-4212.
[25] 刘奋飞,赵 辉,陶 卫.改进的直线拟合线阵CCD图像边缘检测方法[J].光电工程,2005,32(3):40-43.
LIU Fen-fei, ZHAO Hui, TAO Wei. Improved edge detection method for the linear CCD image on linear fitting[J]. Opto-Electronic Engineering, 2005, 32(3): 40-43.(in Chinese)