|Table of Contents|

New numerical simulation method of shortwave track irregularity(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2016年01期
Page:
37-45
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
New numerical simulation method of shortwave track irregularity
Author(s):
LI Zai-wei123 LEI Xiao-yan2 GAO Liang3
1. School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China;
2. Engineering Research Center of Railway Environmental Vibration and Noise of Ministry of Education, East China Jiaotong University; Nanchang 330013, Jiangxi, China;
3. School of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044, China
Keywords:
subway track wavelet transform 1/3 octave analysis shortwave track irregularity numerical simulation
PACS:
U216.3
DOI:
-
Abstract:
Aiming at the shortwave track irregularity problem, a numerical simulation method based on scattered binary wavelet was proposed. The relationship between ISO 3095 standard spectrum and wavelet coefficients was obtained with ISO 3095 standard spectrum as objective function. The algorithm flow and steps of numerical simulation were designed. Numerical simulation result and field measurement result for a subway section in Shanghai were compared. Analysis result shows that suitable wavelet decomposition level is eight and the lowest level covers the wavelength range of 512-1 024 mm. Time domain waveform of numerical simulation for shortwave track irregularity accords with the statistical characteristics of actual shortwave track irregularity and shows instability, its amplitude value distributes in the range of -0.15-0.15 mm. The difference between numerical simulation result and ISO 3095 standard spectrum results from the difference between octave sampling interval and 1/3 octave sampling interval. Using the binary wavelet transform can effectively realize the numerical simulation for shortwave track irregularity. Simulation result and test result are slightly different in amplitude and detailed wavform. It is suggested to do a large number of measurements and statistical analysis for shortwave track irregularity. 1 tab, 11 figs, 21 refs.

References:

[1] GRASSIE S L. Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling[J]. Journal of Rail and Rapid Transit, 2012, 226(5): 542-557.
[2] MOLODOVA M, LI Z L, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356.
[3] 周 宇.城市轨道交通轨面短波不平顺水平谱分析[J].城市轨道交通研究,2014,17(4):18-22. ZHOU Yu. Analysis of rail surface roughness level spectrum for urban rail transit[J]. Urban Mass Transit, 2014, 17(4): 18-22.(in Chinese)
[4] GRASSIE S L. Measurement of longitudinal rail irregularities and criteria for acceptable grinding[J]. Journal of Sound and Vibration, 1999, 227(5): 949-964.
[5] LEI Xiao-yan, ZHANG Bin. Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements[J]. Journal of Transportation Engineering, 2011, 137(4): 227-240. 图11 数值模拟小波分解结果 Fig.11 Wavelet decomposition result of numerical simulation
[6] LEI Xiao-yan, WANG Jian. Dynamic analysis of the train and slab track coupling system with finite elements in a moving frame of reference[J]. Journal of Vibration and Control, 2014, 20(9): 1301-1317.
[7] WANG Kai-yun, LIU Peng-fei, ZHAI Wan-ming, et al. Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway[J]. Science China Technological Sciences, 2015, 58(2): 226-235.
[8] WANG P, REN J J; XIANG R, et al. Influence of rub-plate length on forces and displacements of longitudinally coupled slab track for a bridge turnout[J]. Journal of Rail and Rapid Transit, 2012, 226(3): 284-293.
[9] 高 亮,王 璞,蔡小培,等.基于多车精细建模的曲线地段重载列车-轨道系统动力性能研究[J].振动与冲击,2014,33(22):1-6,12. GAO Liang, WANG Pu, CAI Xiao-pei, et al. Dynamic characteristics of train-track system in curved track sections based on elaborate multi-vehicle model[J]. Journal of Vibration and Shock, 2014, 33(22): 1-6, 12.(in Chinese)
[10] 翟婉明,韩卫军,蔡成标,等.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(6):65-69. ZHAI Wan-ming, HAN Wei-jun, CAI Cheng-biao, et al. Dynamic properties of high-speed railway slab tracks[J]. Journal of the China Railway Society, 1999, 21(6): 65- 69.(in Chinese)
[11] 周永健,练松良,杨文忠.轨面短波不平顺对轮轨力影响的研究[J].华东交通大学学报,2009,26(4):6-12. ZHOU Yong-jian, LIAN Song-liang, YANG Wen-zhong. Research of the impact of short wave track irregularity on the wheel-rail force[J]. Journal of East China Jiaotong University, 2009, 26(4): 6-12.(in Chinese)
[12] 李 斌,刘学毅.客运专线铁道车辆随机振动特性[J].西南交通大学学报,2010,45(2):191-195,212. LI Bin, LIU Xue-yi. Random vibration property of high-speed railway vehicle in passenger dedicated line[J]. Journal of Southwest Jiaotong University, 2010, 45(2): 191-195, 212.(in Chinese)
[13] 毛晓君,周 宇,许玉德.轨面短波不平顺时域反演算法研究[J].华东交通大学学报,2014,31(1):7-12. MAO Xiao-jun, ZHOU Yu, XU Yu-de. Time domain inversion algorithm for rail surface irregularities[J]. Journal of East China Jiaotong University, 2014, 31(1): 7-12.(in Chinese)
[14] 徐庆元.短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J].土木工程学报,2011,44(10):132-137. XU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44(10): 132-137.(in Chinese)
[15] 韦红亮,练松良,刘 扬.城市轨道交通轨面短波不平顺测试分析[J].华东交通大学学报,2011,28(4):33-37. WEI Hong-liang, LIAN Song-liang, LIU Yang. Experimental study on rail surface shortwave irregularity in urban mass transit[J]. Journal of East China Jiaotong University, 2011, 28(4): 33-37.(in Chinese)
[16] 陈宪麦,王 澜,陶夏新,等.基于小波分析理论的轨道不平顺分析[J].铁道工程学报,2008,25(1):57-61,71. CHEN Xian-mai, WANG Lan, TAO Xia-xin, et al. Analysis of track irregularity with wavelets analysis theory[J]. Journal of Railway Engineering Society, 2008, 25(1): 57-61, 71.(in Chinese)
[17] 徐 磊,陈宪麦,徐伟昌,等.基于小波和Wigner-Ville分布的轨道不平顺特征识别[J].中南大学学报:自然科学版,2013,44(8):3344-3350. XU Lei, CHEN Xian-mai, XU Wei-chang, et al. Explored of track irregularity's characteristic identification based on wavelet method and Wigner-Ville distribution[J]. Journal of Central South University: Science and Technology, 2013, 44(8): 3344-3350.(in Chinese)
[18] 吕 宏,李再帏,何越磊.考虑波长因素的轨道不平顺预测研究[J].铁道科学与工程学报,2015,12(6):1312-1318. LU Hong, LI Zai-wei, HE Yue-lei. The prediction method considering the factors of track irregularity wavelength[J]. Journal of Railway Science and Engineering, 2015, 12(6): 1312-1318.(in Chinese)
[19] 韩 晋,杨 岳,陈 峰,等.基于小波变换的轨道检测数据滤波方法[J].铁道科学与工程学报,2013,10(5):116-122. HAN Jin, YANG Yue, CHEN Feng, et al. Data filtering approach of rail detection based on wavelet transform[J]. Journal of Railway Science and Engineering, 2013, 10(5): 116-122.(in Chinese)
[20] DAUBECHIES I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996.
[21] 刘秀波,吴卫新.钢轨焊接接头短波不平顺功率谱分析[J].中国铁道科学,2000,21(2):26-34. LIU Xiu-bo, WU Wei-xin. PSD analysis of shortwave irregularity on welded joints[J]. China Railway Science, 2000, 21(2): 26-34.(in Chinese)

Memo

Memo:
-
Last Update: 2016-02-20