|Table of Contents|

Block backstepping stabilization control of underactuated USV in polar coordinate system(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2015年04期
Page:
61-68
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Block backstepping stabilization control of underactuated USV in polar coordinate system
Author(s):
DONG Zao-peng WAN Lei LI Yue-ming ZHANG Lei ZHANG Guo-cheng LIAO Yu-lei
School of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
Keywords:
ship engineering unsymmetrical USV underactuated control polar coordinate system MIMO block backstepping approach Lyapunov stability theory
PACS:
U664.82
DOI:
-
Abstract:
To the stabilization problem of underactuated unsymmetrical unmanned surface vessel(USV), a block backstepping approach with multiple inputs and multiple outputs(MIMO)was proposed in polar coordinate system. A drift angle polar coordinate system was designed as body-fixed moving coordinate system, and Cartesian coordinate system was replaced by polar coordinate system as earth-fixed coordinate system. By combining the drift angle, yaw angle and polar angle, the kinematics and dynamics equations of USV horizontal plane motion in polar coordinate system were obtained, so that the underactuated problem in Cartesian coordinate systems was simplified to the full actuated problem in polar coordinate system. Based on Lyapunov stability theory and the backstepping approach, MIMO block backstepping stabilization control laws for underactuated unsymmetrical USV in polar coordinate system was designed. With the aid of semi-physical simulation platform in the laboratory, an USV model with 1.2 m and 17.5 kg was taken for stabilization control simulation experiment. The proposed block backstepping stabilization control algorithm was compared with the traditional backstepping control algorithm based on symmetry model. Comparison result shows that the convergence rates of position and yaw attitude increase by about 10 s, the stabilization errors of position and yaw angle decrease by about 0.3 m and 10° respectively, the overshoots of linear velocity and yaw angle velocity reduce by about 0.6 m·s-1 and 2 rad·s-1separately, so the proposed backstepping control method has higher reliability, stability and accuracy. 3 tabs, 10 figs, 25 refs.

References:

[1] ANNAMALAI A S K, SUTTON R, YANG C, et al. Robust adaptive control of an uninhabited surface vehicle[J]. Journal of Intelligent and Robotic Systems, 2015, 78(2): 319-338.
[2] 董早鹏,刘 涛,万 磊,等.基于Takagi-Sugeno模糊神经网络的欠驱动无人艇直线航迹跟踪控制[J].仪器仪表学报,2015,36(4):863-870.DONG Zao-peng, LIU Tao, WAN Lei, et al. Straight-path tracking control of underactuated USV based on Takagi-Sugeno fuzzy neural network[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 863-870.(in Chinese)
[3] SOHN S I, OH J H, LEE Y S, et al. Design of a fuel-cell-powered catamaran-type unmanned surface vehicle[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 388-396.
[4] LIU Cheng, ZOU Zao-jian, HOU Xian-rui. Stabilization and tracking of underactuated surface vessels in random waves with fin based on adaptive hierarchical sliding mode technique[J]. Asian Journal of Control, 2014, 16(5): 1492-1500.
[5] DONG Zao-peng, WAN Lei, LI Yue-ming, et al. Point stabilization for an underactuated AUV in the presence of ocean currents[J]. International Journal of Advanced Robotic Systems, 2015, 12(1): 1-14.
[6] GHOMMAM J, MNIF F, BENALI A, et al. Asymptotic backstepping stabilization of an underactuated surface vessel[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1150-1157.
[7] 刘 杨,郭 晨,刘 雨.欠驱动船舶运动的非连续变参数镇定控制[J].大连海事大学学报,2009,35(1):9-12,17.LIU Yang, GUO Chen, LIU Yu. Discontinuous varying-parameters stabilization control for underactuated surface vessel motion[J]. Journal of Dalian Maritime University, 2009, 35(1): 9-12, 17.(in Chinese)
[8] LIU Zhi-lin, YU Rui-ting, ZHU Qi-dan. Stabilization control and simulation of an unmanned surface vessel[C]∥Chinese Association of Automation. Proceedings of the 30th Chinese Control Conference. Beijing: Chinese Association of Automation, 2011: 3606-3609.
[9] 丁福光,吴 静,隋玉峰.基于反步法的欠驱动船舶镇定控制[J].计算机仿真,2013,30(10):377-381.DING Fu-guang, WU Jing, SUI Yu-feng. Stabilization of underactuated surface vessel based on backstepping[J]. Computer Simulation, 2013, 30(10): 377-381.(in Chinese)
[10] 李 晔,吴 琪.欠驱动AUV水平面运动的镇定控制设计[J].船舶工程,2013,35(5):68-71.LI Ye, WU Qi. Self-collected control design of planar motion of underactuated AUV[J]. Ship Engineering, 2013, 35(5): 68-71.(in Chinese)
[11] 刘 杨,郭 晨,张 闯.遗传优化的欠驱动船舶镇定控制[J].计算机工程与应用,2009,45(8):204-207.LIU Yang,GUO Chen,ZHANG Chuang. Stabilization of underactuated surface vessel with genetic algorithm optimization[J]. Computer Engineering and Applications, 2009, 45(8): 204-207.(in Chinese)
[12] LIAO Yu-lei, WAN Lei, ZHUANG Jia-yuan. Full state-feedback stabilization of an underactuated unmanned surface vehicle[C]∥IEEE. 2nd International Conference on Advanced Computer Control. Washington DC: IEEE, 2010: 70-74.
[13] 廖煜雷,庞永杰,张铁栋.欠驱动自治水面船的全局K-指数镇定控制方法[J].哈尔滨工程大学学报,2011,32(4):417-422.LIAO Yu-lei, PANG Yong-jie, ZHANG Tie-dong. Global K-exponential stabilization of underactuated autonomous surface vessels by a smooth time-varying feedback control[J]. Journal of Harbin Engineering University, 2011, 32(4): 417-422.(in Chinese)
[14] 曾薄文,朱齐丹.欠驱动无人艇的全局时变反馈镇定控制[J].船舶工程,2012,34(2):50-52.ZENG Bo-wen, ZHU Qi-dan. Global time-varying feedback stabilization control of an underactuated unmanned surface vessel[J]. Ship Engineering, 2012, 34(2): 50-52.(in Chinese)
[15] YUAN Xin, RONG Xiao-xu, WANG Yan, et al. Discontinuous k-exponential stabilization of underactuated nosymmetry surface vessel[C]∥ZHONG Shao-bo. Proceedings of the 2012 International Conference on Cybernetics and Informatics. Berlin: Springer, 2012: 1769-1776.
[16] ZHANG Zhong-cai, WU Yu-qiang. Switching-based asymptotic stabilization of underactuated ships with non-diagonal terms in their system matrices[J]. IET Control Theory and Applications, 2015, 9(6): 972-980.
[17] MA Bao-li, XIE Wen-jing. Global asymptotic trajectory tracking and point stabilization of asymmetric underactuated ships with non-diagonal inertia/damping matrices[J]. International Journal of Advanced Robotic Systems, 2013, 10(5): 1-9.
[18] 万 磊,董早鹏,李岳明,等.非完全对称欠驱动无人艇全局渐近镇定控制[J].华中科技大学学报:自然科学版,2014,42(8):48-53.WAN Lei, DONG Zao-peng, LI Yue-ming, et al. Global asymptotic stabilization control of incomplete symmetry underactuated USV[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(8): 48-53.(in Chinese)
[19] XIE Wen-jing, MA Bao-li. Robust global uniform asymptotic stabilization of underactuated surface vessels with unknown model parameters[J]. International Journal of Robust and Nonlinear Control, 2015, 25(7): 1037-1050.
[20] ROBINSON J W C. Block backstepping for nonlinear flight control law design[C]∥BATES D, HAGSTR?M M. Nonlinear Analysis and Synthesis Techniques for Aircraft Control, Volume 365 of the Series Lecture Notes in Control and Information Sciences. Berlin: Springer, 2007: 231-257.
[21] CHANG Yao-te. Block backstepping control of MIMO systems[J]. IEEE Transactions on Automatic Control, 2011, 56(5): 1191-1197.
[22] RUDRA S, BARAI R K, MAITRA M. Design of nonlinear state feedback control law for underactuated two-link planar robot: a block backstepping approach[C]∥ACM. Proceedings of 2013 Conference on Advances in Robotics. New York: ACM, 2013: 1-6.
[23] DO K D. Global inverse optimal stabilization of stochastic nonholonomic systems[J]. Systems and Control Letters, 2015, 75: 41-55.
[24] 万 磊,董早鹏,李岳明,等.非完全对称欠驱动高速无人艇轨迹跟踪控制[J].电机与控制学报,2014,18(10):95-103.WAN Lei, DONG Zao-peng, LI Yue-ming, et al. Trajectory tracking control of incomplete symmetry underactuated USV at high speed[J]. Electric Machines and Control, 2014, 18(10): 95-103.(in Chinese)
[25] DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713-1722.

Memo

Memo:
-
Last Update: 2015-08-30