|Table of Contents|

Diagnostic model of crack for tunnel lining based on gray and catastrophe theories(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2015年03期
Page:
34-40
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Diagnostic model of crack for tunnel lining based on gray and catastrophe theories
Author(s):
ZHANG Su-lei1 CHEN Huai1 WANG Ya-qiong23
1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China; 2. Key Laboratory forHighway Bridge and Tunnel of Shaanxi Province, Chang’an University, Xi’an 710064, Shaanxi, China; 3. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, Virginia, USA
Keywords:
tunnel engineering lining crack wavelet transform gray theory catastrophe theory diagnostic model
PACS:
U456.31
DOI:
-
Abstract:
In order to evaluate the stability of crack for tunnel lining by using finite monitoring data, wavelet transform was applied to analyze the monitoring data of cracks for tunnel lining, the high frequency part caused by environmental change and test error was eliminated, and the low frequency part caused by surrounding rock pressure variation was kept, thus, the time-dependent deformation of lining crack was decomposed. The GM(1,1)gray prediction model of time-dependent deformation of lining crack was built based on gray theory to predict the later development of lining crack by using early monitoring data. The stability criterion of lining crack was established based on the equilibrium conditions of cusp catastrophe model. The diagnostic model of lining crack was established based on gray and catastrophe theories, and two typical lining cracks were analyzed based on the model. Analysis result indicates that the stability criterion values of two cracks are larger than 0, so, they do not meet the instability condition. The measured variations of crack widths are less than 0.2 mm, the variation rates are less than 0.002 mm·d-1, which shows that two cracks are basically stable. Obviously, this diagnostic model can predict the development tendency of lining cracks correctly. 6 figs, 19 refs.

References:

[1] INOKUMA A, INANO S. Road tunnels in Japan: deterioration and countermeasures[J]. Tunnelling and Underground Space Technology, 1996, 11(3): 305-309.
[2] 吴江滨,张顶立,王梦恕.铁路运营隧道病害现状及检测评估[J].中国安全科学学报,2003,13(6):49-52,83.WU Jiang-bin, ZHANG Ding-li, WANG Meng-shu. Current damage situation of railway operation tunnels and their inspection and evaluation[J]. China Safety Science Journal, 2003, 13(6): 49-52, 83.(in Chinese)
[3] 叶 飞,何 川,夏永旭.公路隧道衬砌裂缝的跟踪监测与分析研究[J].土木工程学报,2010,43(7):97-104.YE Fei, HE Chuan, XIA Yong-xu. Post-construction monitoring and analysis for highway tunnel lining cracks[J]. China Civil Engineering Journal, 2010, 43(7): 97-104.(in Chinese)
[4] 叶 飞,朱合华,丁文其,等.连拱隧道衬砌裂缝的三维监测研究[J].现代隧道技术,2006,43(2):30-33.YE Fei, ZHU He-hua, DING Wen-qi, et al. Three-dimensional in-situ monitoring for the cracks on a multi-arch highway tunnel lining[J]. Modem Tunnelling Technology, 2006, 43(2): 30-33.(in Chinese)
[5] 王建秀,朱合华,唐益群,等.连拱隧道裂缝运动的监测与分析[J].土木工程学报,2007,40(5):69-73.WANG Jian-xiu, ZHU He-hua, TANG Yi-qun, et al. Monitoring and analysis for movement of cracks of twin-arch tunnel[J]. China Civil Engineering Journal, 2007, 40(5): 69-73.(in Chinese)
[6] 潘洪科,杨琳德,黄 慷.公路隧道偏压效应与衬砌裂缝的研究[J].岩石力学与工程学报,2005,24(18):3311-3315.PAN Hong-ke, YANG Lin-de, HUANG Kang. Research on unsymmetrical load effect and lining cracks of a highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3311-3315.(in Chinese)
[7] CATBAS F N, SUSOY M, FRANGOPOL D M. Structural health monitoring and reliability estimation: long span truss bridge application with environmental monitoring data[J]. Engineering Structures, 2008, 30(9): 2347-2359.
[8] POSENATO D, LANATA F, INAUDI D, et al. Model-free data interpretation for continuous monitoring of complex structures[J]. Advanced Engineering Informatics, 2008, 22(1): 135-144.
[9] WENG J H, LOH C H, LYNCH J P, et al. Output-only modal identification of a cable-stayed bridge using wireless monitoring systems[J]. Engineering Structures, 2008, 30(7): 1820-1830.
[10] GUL M, CATBAS F N. Statistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verifications[J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2192-2204.
[11] LI Chang-dong, TANG Hui-ming, HU Xin-li, et al. Landslide prediction based on wavelet analysis and cusp catastrophe[J]. Journal of Earth Science, 2009, 20(6): 971-977.
[12] QIN S, JIAO J J, WANG S. A cusp catastrophe model of instability of slip-buckling slope[J]. Rock Mechanics and Rock Engineering, 2001, 34(2): 119-134.
[13] LIU D W, WANG J Y, WANG Y J. Application of catastrophe theory in earthquake hazard assessment and earthquake prediction research[J]. Tectonophysics, 1989, 167(2-4): 179-186.
[14] XU Yun-yun, XU Dong-qiang. The study of forecasting model of rock burst for acoustic emission based on BP neural network and catastrophe theory[J]. Lecture Notes in Electrical Engineering, 2010, 67: 11-19.
[15] 王思长,折学森,李 毅,等.基于尖点突变理论的岩质边坡稳定性分析[J].交通运输工程学报,2010,10(3):23-27.WANG Si-chang, SHE Xue-sen, LI Yi, et al. Stability analysis of rock slope based on cusp catastrophe theory[J]. Journal of Traffic and Transportation Engineering, 2010, 10(3): 23-27.(in Chinese)
[16] MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[17] 蔡 新,严 伟,李 益,等.灰色理论在提防安全评价中的应用[J].水利发电学报,2012,31(1):62-66.CAI Xin, YAN Wei, LI Yi, et al. Grey theory in comprehensive evaluation of dyke safety risk[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 62-66.(in Chinese)
[18] KADALI B R, RATHI N, PERUMAL V. Evaluation of pedestrian mid-block road crossing behaviour using artificial neural network[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(2): 111-119.
[19] 付成华,陈胜宏.基于突变理论的地下工程洞室围岩失稳判据研究[J].岩土力学,2008,29(1):167-172.FU Cheng-hua, CHEN Sheng-hong. Study on instability criteria of surrounding rock of underground engineering cavern based on catastrophe theory[J]. Rock and Soil Mechanics, 2008, 29(1): 167-172.(in Chinese)

Memo

Memo:
-
Last Update: 2015-06-20