[1] ALLISON J. Marine waterjet propulsion[J]. SNAME Transactions, 1993, 101: 275-335.
[2] WESSEL J. Waterjet propulsion for a 3 500 ton corvette from BLOHM+VOSS[C]∥RINA. International Conference on Waterjet Propulsion Ⅳ. London: The Royal Institution of Naval Architects, 2004: 18-26.
[3] GILES W, DINHAM-PEREN T, AMARATUNGA S, et al. The advanced waterjet: propulsor performance and effect on ship design[C]∥IMarEST. 10th International Naval Engineering Conference and Exhibition. London: IMarEST, 2010: 1-19.
[4] KERREBROCK J L. Principles of Turbomachinery[M]. London: The MIT Press, 1996.
[5] ALLISION J L, JIANG C, STRICKER J G. Modern tools for waterjet pump design and recent advance in the field[C]∥RINA. International Conference on Waterjet Propulsion Ⅱ. London: The Royal Institution of Naval Architects, 1998: 23-34.
[6] LAVIS D R, FORSTELL B G, PURNEL J G. Compact waterjets for high-speed ships[J]. Ships and Offshore Structures, 2007, 2(2): 115-125.
[7] PURNELL J. Waterjet self-propulsion model test for application to a high-speed sealift ship[R]. Severna Park: CDI Marine Company, 2007.
[8] MICHAEL T J, SCHROEDER S D, BECNEL A J. Design of the ONR AxWJ-2 axial flow waterjet pump[R]. Bethesda: Naval Surface Warfare Center, 2008.
[9] SCHROEDER S, KIM S E, JASAK H. Towards predicting performance of an axial flow waterjet including the effects of cavitation and thrust breakdown[C]∥ICMIA. Proceedings of the First International Symposium on Marine Propulsors. Brussels: ICMIA, 2009: 387-394.
[10] ZANGENEH M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31.
[11] ZANGENEH M, GOTO A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-36.
[12] ZANGENEH M, DANESHKHAH K, DACOSTA B. A multi-objective automatic optimization strategy for design of waterjet pumps[C]∥RINA. International Conference on Waterjet Propulsion Ⅴ. London: The Royal Institution of Naval Architects, 2008: 27-32.
[13] 罗兴琦,陈乃祥,林汝长.混流式转轮的准三维设计[J].水利学报,1996(10):18-21,26.LUO Xing-qi, CHEN Nai-xiang, LIN Ru-chang. A quasi three-dimensional design method for francis runner[J]. Journal of Hydraulic Engineering, 1996(10): 18-21, 26.(in Chinese)
[14] 彭国义,罗兴琦,郭齐胜,等.轴流式水轮机转轮的准三维有旋流动设计[J].水利学报,1996(10):10-17.PENG Guo-yi, LUO Xing-qi, GUO Qi-sheng, et al. A quasi three-dimensional inverse method for Kaplan turbine runner in rotational flow[J]. Journal of Hydraulic Engineering, 1996(10): 10-17.(in Chinese)
[15] 曹玉良,王永生,靳栓宝.浸没式喷水推进泵设计及装船后性能预报[J].西安交通大学学报,2014,48(5):96-101.CAO Yu-liang, WANG Yong-sheng, JIN Shuan-bao. Design of submerged waterjet pump and performance prediction after installation[J]. Journal of Xi’an Jiaotong University, 2014, 48(5): 96-101.(in Chinese)
[16] 靳栓宝,王永生,丁江明,等.混流式喷水推进泵三元设计及数值试验[J].哈尔滨工程大学学报,2012,33(10):1223-1227.JIN Shuan-bao, WANG Yong-sheng, DING Jiang-ming, et al. Three-dimensional design and numerical experiment of mixed-flow waterjet with CFD[J]. Journal of Harbin Engineering University, 2012, 33(10): 1223-1227.(in Chinese)
[17] 靳栓宝,王永生.基于三元设计及数值试验轴流泵抗空化性能[J].排灌机械工程学报,2013,31(9):763-767.JIN Shuan-bao, WANG Yong-sheng. 3D design of axial-flow pump and numerical prediction of its cavitation performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(9): 763-767.(in Chinese)
[18] TAYLOR T E, KERWIN J E, SCHERER J O. Waterjet pump design and analysis using a coupled lifting-surface and RANSprocedure[C]∥RINA. International Conference on Waterjet Propulsion Ⅱ. London: The Royal Institution of Naval Arichtects, 1998: 156-172.
[19] HUNTSMAN I, HOTHERSALL R. Development of quasi 3D design methods and 3D flow solvers for the hrdrodynamic design of waterjets[C]∥RINA. International Conference on Waterjet Propulsion Ⅲ. London: The Royal Institution of Naval Arichtects, 2001: 213-222.
[20] MOON I S, KIM K S, LEE C S. Blade tip gap flow model for performance analysis of waterjet propulsor[C]∥IABEM. International Association for Boundary Element Methods(IABEM)2002 Symposium. Austin: IABEM, 2002: 1-14.