|Table of Contents|

Model-free adaptive vector control method of SSP propulsion motor for ship pod(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2014年06期
Page:
59-66
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Model-free adaptive vector control method of SSP propulsion motor for ship pod
Author(s):
YAO Wen-long1 ZHANG Jun-dong1 CHI Rong-hu2 ZHANG Gui-chen3 SHI Zhen-hua4
1. School of Marine Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China; 2. School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China; 3. School of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China; 4. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
Keywords:
marine engineering ship pod SSP propulsion motor model-free adaptive vector control self-adjusting PI vector control
PACS:
U665.11
DOI:
-
Abstract:
Considering the control problems of propulsion motor of ship SSP(siemens schottel propulsor)system under uncertain dynamic state, load change and sea condition disturbance, a model-free adaptive vector control method was proposed. The dynamic linearization equations of propulsion motor were derived. A model-free adaptive vector controller was designed based on the speed tracking error and its convergence was proved. The pseudo-partial-derivative was online adjusted to ensure the tracking error of propulsion motor control system uniformly bounded. The control performances of model-free adaptive vector controller and self-adjusting PI vector controller were compared. Computed result shows that based on model-free adaptive vector control, the speed average oscillations are within 6 r·min-1 and 7 r·min-1 in rough sea and maneuverable navigation, respectively, and the torque average oscillations are 8.20×104 N·m and 1.08×105 N·m, respectively. But based on self-adjusting PI vector control, the average speed oscillations reach 13 r·min-1and 12 r·min-1, respectively, and the torque average oscillations are 2.13×105 N·m and 2.81×105 N·m, respectively. Obviously, the model-free adaptive vector control system has lower speed and torque fluctuations and smaller static error of steady state operation, so its dynamic responses are better. 6 figs, 21 refs.

References:

[1] 高宏伟,杨贵杰,刘 剑.三次谐波注入式五相永磁同步电机矢量控制策略[J].中国电机工程学报,2014,34(24):4101-4108.GAO Hong-wei, YANG Gui-jie, LIU Jian. A vector control strategy for five-phase PMSM with third harmonic injection[J]. Proceedings of the CSEE, 2014, 34(24): 4101-4108.(in Chinese)
[2] HARTANI K, SEKOUR M, DRAOU A. A new direct torque control scheme for PMSM with on-line stator resistance tuning[C]∥IEEE. Fourth International Conference on Power Engineering, Energy and Electrical Drives. Istanbul: IEEE, 2013: 721-726.
[3] 陆文斌,姚文熙,吕征宇.基于改进闭环磁链观测器的感应电机无速度矢量控制[J]. 电工技术学报,2013,28(3):148-153.LU Wen-bin, YAO Wen-xi, LU Zheng-yu. Speed sensorless vector control with improved closed-loop flux observer for induction machines[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 148-153.(in Chinese)
[4] OZKOP E, OKUMUS H I. Direct torque control of induction motor using space vector modulation(SVM-DTC)[C]∥IEEE. 12th International Middle-East Power System Conference. Aswan: IEEE, 2008: 368-372.
[5] 李 巍,汪 蕾,杨晨俊,等.吊舱推进器定常水动力性能[J].上海交通大学学报,2009,43(2):204-207.LI Wei, WANG Lei, YANG Chen-jun, et al, The steady hydrodynamics performance of pod-propeller[J]. Journal of Shanghai Jiaotong University, 2009, 43(2): 204-207.(in Chinese)
[6] TABBACHE B, KHELOUI A, BENBOUZID M E H. An adaptive electric differential for electric vehicles motion stabilization[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 104-110.
[7] 刘栋梁,郑谢辉,崔丽丽.无速度传感器永磁同步电机反步控制[J].电工技术学报,2011,26(9):67-72.LIU Dong-liang, ZHENG Xie-hui, CUI Li-li. Backstepping control of speed sensorless permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 67-72.(in Chinese)
[8] JAFARIFAR M, KIANINEZHAD R, SEIFOSSADAT S G, et al. Sliding mode and disturbance observer: two viable schemes for sensorless control of induction machines[C]∥IEEE. 4th IEEE Conference on Industrial Electronics and Applications. Xi’an: IEEE, 2009: 2329-2334.
[9] ANDON V T, GIUSEPPE L C, VINCENZO G, et al. Sliding mode neuro-adaptive control of electric drives[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 671-679.
[10] 周华伟,温旭辉,赵 峰,等.基于内模的永磁同步电机滑模电流解耦控制[J].中国电机工程学报,2012,32(15):91-99.ZHOU Hua-wei, WEN Xu-hui, ZHAO Feng, et al. Decoupled current control of permanent magnet synchronous motors drives with sliding mode control strategy based on internal model[J]. Proceedings of the CSEE, 2012, 32(15): 91-99.(in Chinese)
[11] 王礼鹏,张化光,刘秀翀.永磁同步电动机无速度传感器矢量调速系统的积分反步控制[J].控制理论与应用,2012,29(2):199-204.WANG Li-peng, ZHANG Hua-guang, LIU Xiu-chong. Integral backstepping controller in the sensorless vector-control system for permanent magnet synchronous motor[J]. Control Theory and Applications, 2012, 29(2): 199-204.(in Chinese)
[12] 李兵强,林 辉.面装式永磁同步电机电流矢量直接控制技术[J].中国电机工程学报,2011,31(增):288-294.LI Bing-qiang, LIN Hui. Direct control of current vector for surface-mounted permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2011, 31(S): 288-294.(in Chinese)
[13] 纪 锋,付立军,叶志浩,等.舰船电力推进系统的矢量控制及其仿真[J].武汉理工大学学报:交通科学与工程版,2011,35(2):361-364. JI Feng, FU Li-jun, YE Zhi-hao, et al. Study on vector control for vessel electric propulsion[J]. Journal of Wuhan University of Science and Technology: Transportation Science and Engineering, 2011, 35(2): 361-364.(in Chinese)
[14] 李 鹏,王胜勇,卢家斌,等.PI 参数混合整定法在闭环矢量控制系统中的应用[J].智能系统学报,2013,8(5):446-452.LI Peng, WANG Sheng-yong, LU Jia-bin, et al. The application of hybird PI parameters tunning method to the closed-loop vector control system[J]. CAAI Transactions on Intelligent Systems, 2013, 8(5): 446-452.(in Chinese)
[15] 杨 明.船舶电力推进永磁同步电机非线性反步控制器设计与优化研究[D].大连:大连海事大学,2012.YANG Ming. Research on nonlinear backstepping controller design and optimization of permanent magnet synchronous motor for ship electric propulsion[D]. Dalian: Dalian Maritime University, 2012.(in Chinese)
[16] 侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592.HOU Zhong-sheng. On model-free adaptive control: the state of the art and perspective[J]. Control Theory and Applications, 2006, 23(4): 586-592.(in Chinese)
[17] 侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.HOU Zhong-sheng, XU Jian-xin. On data-driven control theory: the state of the art and perspective[J]. Acta Automatica Sinica, 2009, 35(6): 650-667.(in Chinese)
[18] WANG Jing, JI Chao, CAO Liu-lin, et al. Design and realization of automatic control system for boiler based on model free adaptive control[C]∥IEEE. 2011 Chinese Control and Decision Conference. Mianyang: IEEE, 2011: 1881-1886.
[19] 崔双喜,王维庆,张新燕.大型风力发电机组无模型独立变桨载荷控制[J].电力系统保护与控制,2013,41(5):54-59.CUI Shuang-xi, WANG Wei-qing, ZHANG Xin-yan. Model free and individual pitch load control for large-scale wind turbine[J]. Power System Protection and Control, 2013, 41(5): 54-59.(in Chinese)
[20] YAO Wen-long, LIU Yuan, ZHANG Jun-dong, et al. Ship electrical propulsion control system based on improved model-free adaptive control[C]∥IEEE. The 26th Chinese Control and Decision Conference. Changsha: IEEE, 2014: 1526-1529.
[21] JOHN A, YANG Zai-li, RIAHI R, et al. Application of a collaborative modelling and strategic fuzzy decision support system for selecting appropriate resilience strategies for seaport operations[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 159-179.
[22] SHIN H B, PARK J G. Anti-windup PID controller with integral state predictor for variable-speed motor drives[J]. IEEE Transactions on Industrial Electronic, 2012, 59(3): 1509-1516.

Memo

Memo:
-
Last Update: 2014-12-20