[1] DOC9613, international civil aviation organization, performance based navigation(PBN)manual[S].
[2] 中国民用航空局.中国民航基于性能的导航实施路线图[R].北京:中国民用航空局,2009.
Civil Aviation Administration of China. China civil aviation performance based navigation implementation roadmap[R].Beijing: Civil Aviation Administration of China, 2009.(in Chinese)
[3] MCRUER D T, HOFMANN L G, TEX H R, et al. New approaches to human-pilot/vehicle dynamic analysis[R]. Alexandria: NTIS, 1968.
[4] RICHARDSON D W. Determination of the impact of digital data broadcast on flight technical error[R]. Alexandria: NTIS, 1980.
[5] HAYASHI M. Hidden Markov models to identify pilotinstrument scanning and attention patterns[C]∥IEEE. 2003 IEEE International Conference on Systems, Man, and Cybernetics. Manchester: IEEE, 2003: 2889-2896.
[6] MCRUER D T, KRENDEL E S. The human operator as a servo system element[J]. Journal of the Franklin Institution, 1959, 267(5): 381-403.
[7] MCRUER D T. Human dynamics in man-machine systems[J]. Automatica, 1980, 16(3): 237-253.
[8] MCRUER D T, MAGDALENO R E. Human pilot dynamics with various manipulators[R]. Alexandria: NTIS, 1966.
[9] BEKEY G A. The human operator as a sampled-data system[J]. IEEE Transactions on Human Factors in Electronics, 1962, 3(2): 43-51.
[10] MCRUER D T, JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8(3): 231-249.
[11] RASMUSSEN J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 13(3): 257-266.
[12] KLEINMAN D L, BARON S, LEVISON W H. An optimal control model of human response, part I: theory and validation[J]. Automatica, 1970, 6(3): 357-369.
[13] BARON S, KLEINMAN D L, LEVISON W H. An optimal control model of human response, part II: prediction of human performance in a complex task[J]. Automatica, 1970, 6(3): 371-383.
[14] STAPLEFORD R L, MCRUER D T, MAGDALENO R E. Pilot describing function measurements in a multiloop task[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8(2): 113-125.
[15] KLEINMAN D L. Optimal control of linear systems with time-delay and observation noise[J]. IEEE Transactions on Automatic Control, 1969, 14(5): 524-527.
[16] LEVISON W H, BARON S, KLEINMAN D L. A model for human controller remnant[J]. IEEE Transactions on Man-Machine Systems, 1969, 10(4): 101-108.
[17] THOMPSON P, MCRUER D. Comparison of the human optimal control and crossover models[C]∥AIAA. Proceedings of AIAA Guidance, Navigation, and Control Conference. Minneapolis: AIAA, 1988: 1083-1090.
[18] DIAMANTIDES N D. A pilot analog for airplane pitch control[J]. Journal of the Aerospace Sciences, 1958, 25(6): 361-370.
[19] MAGDALENO R E, MCRUER D T. Experimental validation and analytical elaboration for models of the pilot's neuromuscular sub-system in tracking tasks[R]. Hawthorne: NASA, 1971.
[20] WIERWILLE W W. A theory for optimal deterministic characterization of time-varying human operator dynamics[J]. IEEE Transactions on Human Factors in Electronics, 1965, 6(1): 53-61.
[21] MCDONNELL J D, JEX H R. A critical tracking task for man-machine research related to the operator's effective delay time. II. experimental effects of system input spectra, control stick stiffness, and controlled element order[R]. Washington DC: NASA, 1967.
[22] BARON S, ELKIND J I, KLEINMAN D L, et al. Application of optimal control theory to the prediction of human performance in a complex task[R]. Cambridge: Bolt Beranek and Newman Inc., 1970.
[23] COSTELLO R G, HIGGINS T J. An inclusive classified bibliography pertaining to modeling the human operator as an element in an automatic control system[J]. IEEE Transactions on Human Factors in Electronics, 1966, 7(4): 174-181.
[24] HALL T, SOARES M. Analysis of localizer and glide slope flight technical error[C]∥IEEE. Proceedings of the 27th Digital Avionics Systems Conference. Saint Paul: IEEE, 2008: 1-9.
[25] WILLIAMS D M, CONSIGLIO M C, MURDOCH J L, et al. Flight technical error analysis of the SATS higher volume operations simulation and flightexperiments[C]∥IEEE. Proceedings of the 24th Digital Avionics Systems Conference. Arlington: IEEE, 2005: 1-12.
[26] SCHNELL T, ETHERINGTON T, VOGL T, et al. Field evaluation of a synthetic vision information system onboard the NASA aries 757 at Eagle County Regional Airport[C]∥IEEE. Proceedings of the 21st Digital Avionics Systems Conference. Irivne: IEEE, 2002: 1-12.
[27] LEVY B S, SOM P, GREENHAW R. Analysis of flight technical error on straight, final approach segments[C]∥ION. Proceedings of the ION 59th Annual Meeting. Albuquerque: ION, 2003: 456-467.
[28] ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Lateral flight technical error model for performance based navigation[J]. Chinese Journal of Aeronautics, 2011, 24(3): 329-336.
[29] ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Model of flight technical error in symmetrical plane for performance based navigation[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2010, 28(3): 246-254.
[30] ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Extended estimation method for lateral flight technical error of perturbed system in performance based navigation[J]. Aerospace Science and Technology, 2013, 30(10): 278-285.
[31] 赵鸿盛.PBN导航中飞行技术误差的估计模型与方法研究[D].北京:北京航空航天大学,2012.
ZHAO Hong-sheng. Estimation models and methods of the flight technical error in performance based navigation[D]. Beijing: Beihang University, 2012.(in Chinese)
[32] SHOMBER H R. RNP capability of FMC equipped 737, generation 3[R]. Chicago: Boeing Company, 2002.
[33] MCRUER D T, GRAHAM D, KRENDEL E S, et al. Human pilot dynamics in compensatory systems: theory, models, and experiments with controlled element and forcing function variations[R]. Alexandria: NTIS, 1965.
[34] MCRUER D T, KRENDEL E S. The man-machine system concept[C]∥IEEE. Proceedings of IRE. New York: IEEE, 1962: 1117-1123.
[35] MCDONNEL J D. A preliminary study of human operator behavior following a step change in the controlled element[J]. IEEE Transactions on Human Factors in Electronics, 1966, 7(3): 125-128.
[36] LOOYE G H, BENNANI S. Design of a flight controller for the research civil aircraft model(RCAM)using mu-synthesis[R]. Alexandria: NTIS, 1996.
[37] 徐肖豪,赵鸿盛,王振宇.尾流间隔缩减技术综述[J].航空学报,2010,31(4):655-662.
XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 655-662.(in Chinese)
[38] HESS R A. Analyzing manipulator and feel system effects in aircraft flight control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(4): 923-931.
[39] HESS R A. Analysis of aircraft attitude control systems prone to pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(1): 106-112.
[40] HESS R A. Prediction of pilot opinion ratings using an optimal pilot model[J]. Human Factors, 1977, 19(5): 459-476.
[41] MCRUER D T, KRENDEL E S. Dynamic response of human operators[R]. Cambridge: Massachusetts Institute of Technology, 1957.
[42] KRENDEL E S, MCRUER D T. A servomechanisms approach to skill development[J]. Journal of the Franklin Institute, 1960, 269(1): 24-42.
[43] HUNTLEY M S, TURNER J W, PALMER R. Flight technical error for category B non-precision approaches and missed approaches using non-differential GPS for course guidance[R]. Washington DC: Federal Aviation Administration, 1993.
[44] ANDERSON M R. A flight technical error model for non-stationary random turbulence[C]∥AIAA. Proceedings of AIAA Guidance, Navigation, and ControlConference. Montreal: AIAA, 2001: 1-8.
[45] 赵鸿盛.空中交通中的尾流大涡数值模拟及消散预测算法研究[D].天津:中国民航大学,2008.
ZHAO Hong-sheng. Large eddy simulation and dissipation prediction algorithm research of wake vortex of air traffic[D]. Tianjin: Civil Aviation University of China, 2008.(in Chinese)
[46] 赵鸿盛,徐肖豪.一种尾流消散动态预测的改进算法[J].中国民航大学学报,2008,26(1):4-7.
ZHAO Hong-sheng, XU Xiao-hao. Improved algorithm of dynamic prediction of wake vortex dissipation[J]. Journal of Civil Aviation University of China, 2008, 26(1):4-7.(in Chinese)
[47] 徐肖豪,赵鸿盛,杨传森,等.飞行进近中尾流的大涡数值模拟[J].南京航空航天大学学报,2010,42(2):179-184.
XU Xiao-hao, ZHAO Hong-sheng, YANG Chuan-sen, et al. Large eddy simulation of wake vortex during approach[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(2): 179-184.(in Chinese)
[48] ADAMS R J. An operational evaluation of flight technical error[R]. Alexandria: NTIS, 1975.
[49] ADAMS R J. Avionics certification requirements and procedures: error budgets for VOR/DME-RNAV, Loran-C, Omega and GPS including flight technical error[R]. Alexandria: NTIS, 1981.
[50] ELDREDGE D, CROOK W G, CRIMBRING W R. Simulation tests of flight technical error in 2D/3D area navigation(RNAV)using a multiple waypoint RNAV system with and without a flight director system[R]. Alexandria: NTIS, 1977.
[51] DONG Bing, LUO Xiao-li. Analysis of assessment method about the flight technical error based on Johnson curves[J].Procedia Engineering, 2011, 17: 84-89.
[52] FUJII N. A concept of CAT III GBAS requirement based on real-time flight technical error estimation[C]∥ION. ION GNSS 20th International Technical Meeting of the Satellite Division. Fort Worth: ION, 2007: 453-460.
[53] GARG S, OUZTS P J. Integrated flight propulsion control design for a STOVL aircraft using H-infinity control design techniques[C]∥IEEE. The 1999 American Control Conference. Boston: IEEE, 1999: 568-576.
[54] BRAUN J F, MORTON W W, PECKHAM C G. Flight technical error of general aviation aircraft(statistical analysis of random errors from intended flight altitude of private aviation aircraft operating under visual and instrument flight rules)[R]. Alexandria: NTIS, 1981.