|Table of Contents|

Shear lag effect analysis of flat steel box girder(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2014年04期
Page:
36-44
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Shear lag effect analysis of flat steel box girder
Author(s):
QIAO Peng1 ZHOU Xu-hong23 DI Jin23
1. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China; 2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 3. School of Civil Engineering, Chongqing University, Chongqing 400044, China
Keywords:
bridge engineering flat steel box girder shear lag effect finite element analysis regression analysis practical formula
PACS:
U448.213
DOI:
-
Abstract:
The shear lag effects of flat steel box girder under concentrated and uniform loads were studied by using finite element method. Considering the reasonable ranges of design parameters of flat steel box girder, the influences of some parameters including the width and height of cross section, the thicknesses of top and bottom slabs, the thicknesses and spacings of longitudinal and transverse diaphragms on shear lag effects were analyzed. Based on the result of theoretical analysis, the practical formula was proposed to calculate the shear lag coefficient of flat steel box girder by using mathematical regression analysis, and the calculation result of practical formula was compared with the result of finite element method. Analysis result indicates that span-width ratio has the most significant influence on shear lag effects, when the span-width ratio increases from 1.786 to 8.926, the shear lag coefficients of top and bottom slabs decrease from 1.40 and 1.32 to 1.07 and 1.06, and decrease by about 20%. When the thickness of longitudinal diaphragm increases from 10 mm to 30 mm, the shear lag coefficient of side web decrease by 7%, while the coefficients at other positions change by less than 1%. When the ratio of longitudinal diaphragm spacing to girder width increases from 0.430 to 0.582, the shear lag coefficient increases by 9%. Other parameters have negligible effect on shear lag coefficient. The relative error between the results of proposed practical formula and finite element method is less than 1%,which conforms the formula has higher calculation precision, and meets the need of engineering calculation. 4 tabs, 14 figs, 18 refs.

References:

[1] REISSNER E. Analysis of shear lag in box beams by the principle of minimum potential energy[J]. Quarterly of Applied Mathematics, 1946, 4(3): 268-278.
[2] MOFFATT K R, DOWLING P J. Shear lag in steel box girder bridges[J]. Structural Engineering, 1975, 53(10): 439-448.
[3] LERTSIMA C, CHAISOMPHOB T, YAMAGUCHI E. Stress concentration due to shear lag in simply supported box girders[J]. Engineering Structures, 2004, 26(8): 1093-1101.
[4] LIN Zhi-bin, ZHAO Jian. Revisit of AASHTO effective flange-width provisions for box girders[J]. Journal of Bridge Engineering, 2011, 16(6): 881-889.
[5] 郭秉山,何 玮,闫月梅.薄壁钢箱梁考虑加劲肋构造剪力滞效应的计算[J].西安科技大学学报,2012,32(5):617-621. GUO Bing-shan, HE Wei, YAN Yue-mei. Calculation of shear lag effect on thin-walled box girder by considering arrangement of stiffening rib[J]. Journal of Xi'an University of Science and Technology, 2012, 32(5): 617-621.(in Chinese)
[6] 欧阳永金.大宽跨比连续钢箱梁桥的剪力滞效应研究[J].世界桥梁,2009(1):29-32. OUYANG Yong-jin. Investigation of shear lag effect of continuous steel box girder bridge with great width-to-span ratio[J]. World Bridges, 2009(1): 29-32.(in Chinese)
[7] ZHANG Hui, DESROCHES R, YANG Zi-jiang, et al. Experimental and analytical studies on a streamlined steel box girder[J]. Journal of Constructional Steel Research, 2010, 66(7): 906-914.
[8] 谢 芬,许红胜,颜东煌,等.斜拉桥悬臂施工阶段分离式钢箱梁的剪力滞效应分析[J].长沙理工大学学报:自然科学版,2012,9(2):31-38. XIE Fen, XU Hong-sheng, YAN Dong-huang, et al. The shear lag effect research of separated steel box girder in cantilever construction stage of cable-stayed bridge[J]. Journal of Changsha University of Science and Technology: Natural Science, 2012, 9(2): 31-38.(in Chinese)
[9] 李元兵,张启伟,季云峰.千米级斜拉桥结构静力行为试验研究[J].同济大学学报:自然科学版,2011,39(4):495-500,523. LI Yuan-bing, ZHANG Qi-wei, JI Yun-feng. Mechanical behavior of kilometer-level cable-stayed bridge under static loads[J]. Journal of Tongji University: Natural Science, 2011, 39(4): 495-500, 523.(in Chinese)
[10] 沈锐利,齐东春,唐茂林.杭州江东大桥静力特性全桥模型试验研究[J].土木工程学报,2011,44(1):74-80. SHEN Rui-li, QI Dong-chun, TANG Mao-lin. Model test study of the static property of the Jiangdong Bridge in Hangzhou[J]. China Civil Engineering Journal, 2011, 44(1): 74-80.(in Chinese)
[11] 赵 煜,刘 波.大曲率连续钢箱梁桥剪力滞试验与分析[J].西安科技大学学报,2006,26(3):311-316. ZHAO Yu, LIU Bo. Test and analysis of shear lag for continuous steel bridge with large curvature[J]. Journal of Xi'an University of Science and Technology, 2006, 26(3): 311-316.(in Chinese)
[12] 张 磊,郑宝成,成丕富.双反弯曲线钢箱连续梁桥剪力滞效应研究[J].公路工程,2013,38(4):124-127,132. ZHANG Lei, ZHENG Bao-cheng, CHENG Pi-fu. Research of shear lag effect in reverse bending curved steel box continuous girder bridge[J]. Highway Engineering, 2013, 38(4): 124-127, 132.(in Chinese)
[13] 吴亚平,赖远明,王步云.薄壁钢箱梁的极限强度及有效宽比分析[J].铁道学报,1999,21(3):77-80. WU Ya-ping, LAI Yuan-ming, WANG Bu-yun. Strength and valid width ratio analysis of thin-walled steel box beam in limit state[J]. Journal of the China Railway Society, 1999, 21(3): 77-80.(in Chinese)
[14] 赵 煜,侯俊明.钢结构箱形梁桥结构尺寸优化分析[J].西安公路交通大学学报,2001,21(2):53-56. ZHAO Yu, HOU Jun-ming. The optimum analysis in designing a steel box beam[J]. Journal of Xi'an Highway University, 2001, 21(2): 53-56.(in Chinese)
[15] LIU Xiao-gang, FAN Jian-sheng, NIE Jian-guo, et al. Behavior of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Traffic and Transportation Engin-eering: English Edition, 2014, 1(1): 62-71.
[16] 张太科,周小蓉.大跨度桥梁钢箱梁设计要素简述[J].中外公路,2005,25(4):139-141. ZHANG Tai-ke, ZHOU Xiao-rong. Brief review on key elements of steel box girder design for long span bridges[J]. Journal of China and Foreign Highway, 2005, 25(4): 139-141.(in Chinese)
[17] 彭大文,王 忠.连续弯箱梁剪滞效应分析和实用计算法研究[J].中国公路学报,1998,11(3):41-49. PENG Da-wen, WANG Zhong. Analysis of the shear lag effect in continuous curved box girder bridges and the research on practical calculating method[J]. China Journal of Highway and Transport, 1998, 11(3): 41-49.(in Chinese)
[18] 乔 朋.斜拉桥扁平钢箱主梁的剪力滞效应研究[D].西安:长安大学,2009. QIAO Peng. Study on shear lag effect in flat steel box girder of a cable-stayed bridge[D]. Xi'an: Chang'an University, 2009.(in Chinese)

Memo

Memo:
-
Last Update: 2014-08-30