[1] PAPADIMITRATOS P, LAFORTELLE A, EVENSSEN K, et al. Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation[J]. IEEE Communications Magazine, 2009, 47(11): 84-95.
[2] IEEE Std 802.11pTM—2010, IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements[S].
[3] IEEE Std 1609.3TM—2007, IEEE trial-use standard for wireless access in vehicular environments(WAVE)—networking services[S].
[4] ASTM E2213-03—2010, standard specification for telecommunications and information exchange between roadside and vehicle systems—5 GHz band dedicated short range communications(DSRC)medium access control(MAC)and physical layer(PHY)specifications[S].
[5] UZCATEGUI R, ACOSTA-MARUM G. WAVE: a tutorial[J]. IEEE Communications Magazine, 2009, 47(5): 126-133.
[6] JIANG D, TALIWAL V, MEIER A, et al. Design of 5.9 GHz DSRC-based vehicular safety communication[J]. Wireless Communications, 2006, 13(5): 36-43.
[7] CHOU C M, LI Chen-yuan, CHIEN W M, et al. A feasibility study on vehicle-to-infrastructure communication: WiFi vs. WiMAX[C]∥IEEE. 2009 IEEE International Conference on Mobile Data Management: Systems, Services and Middleware. Taipei: IEEE, 2009: 397-399.
[8] REMY G, SENOUCI S M, JAN F, et al. LTE4V2X: LTE for a centralized VANET organization[C]∥IEEE. 2011 IEEE Global Telecommunications Conference. Houston: IEEE, 2011: 1-6.
[9] ABID H, CHUNG T C, LEE S Y, et al. Performance analysis of LTE smartphones-based vehicle-to-infrastructure communication[C]∥IEEE. Proceedings of the 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing. Fukuoka: IEEE, 2012: 72-78.
[10] VINEL A. 3GPP LTE versus IEEE 802.11p/WAVE: which technology is able to support cooperative vehicular safety applications?[J]. Wireless Communications Letters, 2012, 1(2): 125-128.
[11] MOSYAGIN J. Using 4G wireless technology in the car[C]∥IEEE. 2010 12th International Conference on Transparent Optical Networks. Munich: IEEE, 2010: 1-4.
[12] GOLDSMITH A J, CHUA S G. Adaptive coded modulation for fading channels[J]. IEEE Transactions on Communications, 1998, 46(5): 595-602.
[13] ALOUINI M S, GOLDSMITH A J. Adaptive modulation over Nakagami fading channels[J]. Wireless Personal Communications, 2000, 13(1/2): 119-143.
[14] MARCELINO H, ZENG Hua-shen, GUAN Yan-bin. Performance analysis of OFDMA system in next generation wireless communication networks[C]∥IEEE. 2010 3rd IEEE International Conference on Computer Science and Information Technology. Chengdu: IEEE, 2010: 335 -339.
[15] TARHINI C, CHAHED T. AMC-aware QoS proposal for OFDMA-based IEEE 802.16 WiMAX systems[C]∥IEEE. 2007 IEEE Global Telecommunications Conference. Washington DC: IEEE, 2007: 4780-4784.
[16] LIU Qing-wen, WANG Xin, GIANNAKIS G B. A cross-layer scheduling algorithm with QoS support in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2006, 55(3): 839-847.
[17] LIU Qing-wen, WANG Xin, GIANNAKIS G B. Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links[J]. IEEE Transactions on Wireless Communications, 2004, 3(5): 1746-1755.
[18] 陈 婷,李建东,李长乐.WiMAX中基于跨层设计的SNR阈值区间可变式自适应调制编码机制[J].中国通信,2010,7(2):153-159. CHEN Ting, LI Jian-dong, LI Chang-le. A novel AMC scheme with alterable SNR threshold intervals based on cross-layer design in WiMAX[J]. China Communications, 2010, 7(2): 153-159.(in Chinese)