[1] 丁建明,林建辉,赵 洁,等.车辆悬挂弹簧故障检测的能量传递特性比较法[J].交通运输工程学报,2013,13(4):51-55,62.
DING Jian-ming, LIN Jian-hui, ZHAO Jie, et al. Comparison method of energy transfer characteristics for fault detection of vehicle suspension spring[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 51-55, 62.(in Chinese)
[2] 颜 秋,刘永明.基于MATLAB/Simulink的车辆建模与故障分析[J].华东交通大学学报,2012,29(5):13-17.
YAN Qiu, LIU Yong-ming. The analysis of vehicle model establishment and malfunction based on MATLAB/Simulink[J]. Journal of East China Jiaotong University, 2012, 29(5): 13-17.(in Chinese)
[3] 韩清鹏.利用EEG信号的小波包变换与非线性分析实现精神疲劳状态的判定[J].振动与冲击,2013,32(2):182-188.
HAN Qing-peng. Evaluation of human mental stress states based on wavelet package transformation and nonlinear analysis of EEG signals[J]. Journal of Vibration and Shock, 2013, 32(2): 182-188.(in Chinese)
[4] 黄 娟,黄 纯,江亚群,等.基于小波包近似熵的线路故障性质辨识方法[J].仪器仪表学报,2012,33(9):2009-2015.
HUANG Juan, HUANG Chun, JIANG Ya-qun, et al. Identification method of fault characteristics in transmission lines based on wavelet packet and approximate entropy[J]. Chinese Journal of Scientific Instrument, 2012, 33(9): 2009-2015.(in Chinese)
[5] SESHADRINATH J, SINGH B, PARNIGRAHI B K. Vibration analysis based interturn fault diagnosis in induction machines[J]. IEEE Transactions on Industrial Informatics. 2014, 10(1): 340-350.
[6] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[R]. Calverton: Center for Ocean-Land-Atmosphere Studies, 2009.
[7] WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[C]∥The Royal Society. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 2004: 1597-1611.
[8] 胡爱军,马万里,唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报,2012,32(11):106-111.
HU Ai-jun, MA Wan-li, TANG Gui-ji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE, 2012, 32(11): 106-111.(in Chinese)
[9] LEI Ya-guo, HE Zheng-jia, ZI Yan-yang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6): 7334-7341.
[10] VOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined withensemble empirical mode decomposition method[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2631-2653.
[11] 张学清,梁 军.基于EEMD-近似熵和储备池的风电功率混沌时间序列预测模型[J].物理学报,2013,62(5):76-85.
ZHANG Xue-qing, LIANG Jun. Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir[J]. Acta Physica Sinica, 2013, 62(5): 76-85.(in Chinese)
[12] HUANG Jian, HU Xiao-guang, GENG Xin. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine[J]. Electric Power Systems Research, 2011, 81(2): 400-407.
[13] LABATE D, FORESTA F L, MORABITO G, et al. Entropic measures of EEG complexity in alzheimer's disease through a multivariate multiscale approach[J]. IEEE Sensors Journal, 2013, 13(9): 3284-3292.
[14] HE Zheng-you, CHEN Xiao-qing, LUO Guo-ming. Wavelet entropy measure definition and its application for transmission line fault detection and identification,partⅠ: definition and methodology[C]∥IEEE. 2006 International Conference on Power System Technology. Chongqing: IEEE, 2006: 1-6.
[15] AN Xue-li, JIANG Dong-xiang, LI Shao-hua, et al. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine[J]. Energy, 2011, 36(9): 5508-5520.