|Table of Contents|

Static stiffness calculation model of water-lubricated rubber stern tube bearing(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2013年05期
Page:
61-66
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Static stiffness calculation model of water-lubricated rubber stern tube bearing
Author(s):
ZHANG Sheng-dong12 LIU Zheng-lin12
1. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, Hubei, China; 2. Key Laboratory of Marine Power Engineering and Technology of Ministry of Communications, Wuhan University of Technology, Wuhan 430063, Hubei, China
Keywords:
ship engineering water-lubricated rubber stern tube bearing structural static stiffness calculation model finite element method linear regression method
PACS:
U664.21
DOI:
-
Abstract:
In order to shorten the distence between the experience value and actual value of water-lubricated rubber stern tube bearing, a static stiffness calculation model was proposed by phenomenological theory. The calculation model was linearized to obtain the parameters by linear regression method and finite element method. Significance test for the influence factors of bearing static stiffness was carried out by difference method. Test method offered the stiffness correction coefficient, which verified the correctness and validity of the model. Analysis result shows that the most significant influence on static stiffness of stern tube bearing is length-diameter ratio, the second ones are modulus and pressure ratio, and the last one is rubber thickness. Compared the static stiffness model with the methods of estimation or experience in references, the minimum and maximum relative errors are 0.41% and 34.77% respectively, indicating a closer value to the real. With the increase of pressure ratio, the static stiffness increases nonlinearly, the maximum change value is 1.83×108 N·m-1. 7 tabs, 2 figs, 16 refs.

References:

[1] 周瑞平.超大型船舶推进轴系校中理论研究[D].武汉:武汉理工大学,2005. ZHOU Rui-ping. The theoretic studies on the propulsion shafting alignment of ultra-large vessels[D]. Wuhan: Wuhan University of Technology, 2005.(in Chinese)
[2] 石 磊.计入支承系统特性的船舶推进轴系动态校中研究[D].大连:大连理工大学,2010. SHI Lei. Research on dynamic alignment of marine propulsion shafting considering supporting system characteristics[D]. Dalian: Dalian Universty of Technology, 2010.(in Chinese)
[3] 许运秀.“大源湖”号油船尾管异常声响分析与对策[J].上海造船,2006(1):52-55. XU Yun-xiu. Dayuanhu oil tanker stern tube's abnormal noise analysis[J]. Shanghai Shipbuilding, 2006(1): 52-55.(in Chinese)
[4] The Swedish Club. The Swedish Club highlights: main engine damage—an update of the 1998 study[R]. Göteborg: The Swedish Club, 2005.
[5] 崔明现,侯 予,王林忠,等.波箔轴承结构刚度的计算[J].润滑与密封,2006(5):57-59,63. CUI Ming-xian, HOU Yu, WANG Lin-zhong, et al.On the calculation of structural stiffness of compliant bump foil bearing[J]. Lubrucation Engineering, 2006(5): 57-59, 63.(in Chinese)
[6] ANDRÉS L S, CHIRATHADAM T A, KIM T H. Measurement of structural stiffness and damping coefficients in a metal mesh foil bearing[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 1-7.
[7] KENNY A, PALAZZOLO A, MONTAGUE G T, et al. Theory and test correlation for laminate stacking factor effect on homopolar bearing stiffness[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(1): 142-146.
[8] 李泽天,王兴伟,李小飞.基于ANSYS的轴承座有限元分析[J].兵工自动化,2008,27(12):94-96.LI Ze-tian, WANG Xing-wei, LI Xiao-fei. Finite element analysis of bearing seat based on ANSYS[J]. Ordnance Industry Automation, 2008, 27(12): 94-96.(in Chinese)
[9] 秦 柏,绍俊鹏,张艳芹,等.环形橡胶径向刚度特性仿真分析[J].哈尔滨理工大学学报,2009,14(3):51-55. QIN Bai, SHAO Jun-peng, ZHANG Yan-qin, et al. Radial stiffness characteristics simulation analysis of annular rubber[J]. Journal of Harbin University of Science and Technology, 2009, 14(3): 51-55.(in Chinese)
[10] 董如何,肖必华,方永水.正交试验设计的理论分析方法及应用[J].安徽建筑工业学院学报:自然科学版,2004,12(6):103-106. DONG Ru-he, XIAO Bi-hua, FANG Yong-shui. The theoretical analysis of orthogonal test designs[J]. Journal of Anhui Institute of Architecture and Industry: Natural Science, 2004, 12(6): 103-106.(in Chinese)
[11] VANGRIMDE B, BOUKHILI R. Analysis of the bearing response test for polymer matrix composite laminates: bearing stiffness measurement and simulation[J]. Composite Structures, 2002, 56(4): 359-374.
[12] CHEN Y S, CHIU C C, CHENG Y D. Influences of operational conditions and geometric parameters on the stiffness of aerostatic journal bearings[J]. Precision Engineering, 2010, 34(4): 722-734.
[13] 袁新恒,张隐西,张 勇,等.甲基丙烯酸镁补强丁腈橡胶的拉伸应力-应变行为[J].上海交通大学学报,2000,34(11):1516-1519. YUAN Xin-heng, ZHANG Yin-xi, ZHANG Yong, et al. Study on stress-strain behavior of magnesium methacrylate-reinforced NBR[J]. Journal of Shanghai Jiaotong University, 2000, 34(11): 1516-1519.(in Chinese)
[14] 沈荣瀛,张智勇,汪 玉.船舶推进轴系冲击响应[J].中国造船,2009,41(3):74-79. SHEN Rong-ying, ZHANG Zhi-yong, WANG Yu. Shock response of propulsive shaft of vessels[J]. Shipbuilding of China, 2009, 41(3): 74-79.(in Chinese)
[15] 付团伟,李 明.多点弹性支承下船用螺旋桨轴承的受力与变形分析[J].西安科技大学学报,2011,31(1):112-116. FU Tuan-wei, LI Ming. Force and deformation of ship's propeller bearing on multi-points elastic support[J]. Journal of Xi'an University of Science and Technology, 2011, 31(1): 112-116.(in Chinese)
[16] 刘文红,王家序,周广武,等.含沟槽结构的水润滑橡胶轴承三维弹流润滑分析[J].郑州大学学报:工学版,2012,33(6):79-83. LIU Wen-hong, WANG Jia-xu, ZHOU Guang-wu, et al. Three dimensional EHL analyses for water-lubricated rubber bearings with grooves[J]. Journal of Zhengzhou University: Engineering Science, 2012, 33(6): 79-83.(in Chinese)

Memo

Memo:
-
Last Update: 2013-10-30