|Table of Contents|

Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2013年04期
Page:
37-44
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel
Author(s):
XU Qing-yuan FAN Hao MENG Ya-jun ZHOU Xiao-lin SHI Cheng-hua
School of Civil Engineering, Central South University, Changsha 410075, Hunan, China
Keywords:
subway floating slab track tunnel coupling dynamics longitudinal connection
PACS:
U213
DOI:
-
Abstract:
A coupling dynamics model of subway train, rubber floating slab track and tunnel was established, its corresponding program for coupling dynamic simulation was developedby MATLAB software, and the calculation result of coupling dynamic simulation program was verified by ANSYS software. With the developed coupling dynamic simulation program, a B-type subway train with a speed of 80 km·h-1 was taken as an example, when it past through rubber floating slab track on tunnel with 3 kinds of floating slab lengths and 5 kinds of rubber stiffnesses, the influence of longitudinal connection form of rubber floating slab on the dynamic characteristics of coupling system was calculated. Calculation result shows that longitudinally articulated floating slab has little influence on the dynamic characteristics of each vehicle component, the maximum wheel-rail force, the dynamic characteristics of rail, the dynamic characteristics of rubber mat, and the dynamic characteristics of tunnel, and the influence is less than 10%. When floating slab is longitudinally articulated, the vibration acceleration of floating slab decreases significantly, but the maximum positive bending stress of floating slab increases to a certain extent. When the length of floating slab is longer and the stiffness of vibration-reduced rubber mat is lower, after the floating slab is longitudinally articulated, the maximum fastener tensile force near the joint of two neighboring floating slabs decreases significantly, and the decrease amplitude may exceed 80%. When the length of floating slab is 1.25 m, it is not necessary for the floating slab track to be longitudinally articulated, but when the length of floating slab is 5.00 m and the stiffness of vibration-reduced rubber mat is less than 0.01 N·mm-3, the floating slab track should be longitudinally articulated. When the length of floating slab is 31.25 m, the floating slab track should be longitudinally articulated if the stiffness of vibration-reduced rubber mat is less than 0.02 N·mm-3. 7 tabs, 5 figs, 15 refs.

References:

[1] HUSSEIN M F M, HUNT H E M. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321(1): 363-374.
[2] SAURENMAN H, PHILLIPS J. In-service tests of the effectiveness of vibration control measures on the BART rail transit system[J]. Journal of Sound and Vibration, 2006, 293(3): 888-900.
[3] 李增光,吴天行.浮置板轨道二维建模及隔振性能分析[J].铁道学报,2011,33(8):93-98. LI Zeng-guang, WU Tian-xing. 2-D modelling of floating slab track and performance analysis on vibration isolation[J]. Journal of the China Railway Society, 2011, 33(8): 93-98.(in Chinese)
[4] 丁德云,刘维宁,张宝才,等.特殊浮置板轨道隔振效果的三维数值研究[J].铁道学报,2009,31(6):58-62. DING De-yun, LIU Wei-ning, ZHANG Bao-cai, et al. 3-D numerical study on vibration isolation performance of special floating slab track in lab[J]. Journal of the China Railway Society, 2009, 31(6): 58-62.(in Chinese)
[5] LOMBAERT G, DEGRANDE G, VANHAUWERE B, et al. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs[J]. Journal of Sound and Vibration, 2006, 297(3): 946-961.
[6] KUO C M, HUANG C H, CHEN Y Y. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317(3): 1017-1034.
[7] 刘卫丰,刘维宁,GUPTA S,等.地下列车移动荷载作用下隧道及自由场的动力响应解[J].振动与冲击,2008,27(5):81-84. LIU Wei-feng, LIU Wei-ning, GUPTA S, et al. Dynamic response in tunnel and free field due to the moving underground trains[J]. Journal of Vibration and Shock, 2008, 27(5): 81-84.(in Chinese)
[8] 和振兴.板式无砟轨道交通引起的环境振动研究[D].成都:西南交通大学,2008. HE Zhen-xing. Research of environmental vibration gener-ated by unballasted slab track[D]. Chengdu: Southwest Jiaotong University, 2008.(in Chinese)
[9] 徐庆元,张旭久,曾志平.无砟轨道纵向连接形式对列车-板式无砟轨道-路基系统振动特性影响[J].中国铁道科学,2010,31(1):32-37. XU Qing-yuan, ZHANG Xu-jiu, ZENG Zhi-ping. Influence of the longitudinal connection form of the ballastless track on the vibration characteristics of train-slab ballastless track-subgrade system[J]. China Railway Science, 2010, 31(1): 32-37.(in Chinese)
[10] 徐庆元,曹扬风,周小林.短波随机不平顺对列车-板式无砟轨道-路基系统振动特性的影响[J].中南大学学报:自然科学版,2011,42(4):1105-1110. XU Qing-yuan, CAO Yang-feng, ZHOU Xiao-lin. Influence of short-wave random irregularity on vibration characteristic of train-slab track-subgrade system[J]. Journal of Central South University: Science and Technology Edition, 2011, 42(4): 1105-1110.(in Chinese)
[11] 徐庆元.短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J].土木工程学报,2011,44(10):132-137. XU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44(10): 132-137.(in Chinese)
[12] SATO Y. Study on high-frequency vibration in track operated with high-speed trains[J].Quarterly Reports,1977,18(3):109-114.
[13] 徐志胜.轨道交通轮轨噪声预测与控制的研究[D].成都:西南交通大学,2004. XU Zhi-sheng. Prediction and control of wheel/rail noise for rail transit[D].Chengdu: Southwest Jiaotong University, 2004.(in Chinese)
[14] 陈 果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142. CHEN Guo, ZHAI Wan-ming. Numerical simulation of the stochastic process of railway track irregularities[J]. Journal of Southwest Jiaotong University, 1999, 34(2): 138-142.(in Chinese)
[15] 雷晓燕,毛利军.线路随机不平顺对车辆-轨道耦合系统动力响应分析[J].中国铁道科学,2001,22(6):38-43. LEI Xiao-yan, MAO Li-jun. Analyses of dynamic response of vehicle and track coupling system with random irregularity of rail vertical profile[J]. China Railway Science, 2001, 22(6): 38-43.(in Chinese)

Memo

Memo:
-
Last Update: 2013-08-30