[1] 郑 锦,李 波.视频序列中运动对象检测技术的研究现状与展望[J].计算机应用研究,2008,25(12):3534-3540.
ZHENG Jin, LI Bo. Prospects and current studies on motion object detection in video sequences[J].Application Research of Computers, 2008, 25(12): 3534-3540.(in Chinese)
[2] STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.
[3] 杨国亮,王志良,牟世堂,等.一种改进的光流算法[J].计算机工程,2006,32(15):187-188,226.
YANG Guo-liang, WANG Zhi-liang, MU Shi-tang, et al. An improved optical flow algorithm[J]. Computer Engineering,2006, 32(15): 187-188, 226.(in Chinese)
[4] 娄 路,赵 玲,耿 涛.运动车辆检测与跟踪方法[J].交通运输工程学报,2012,12(4):107-133.
LOU Lu, ZHAO Ling, GENG Tao. Detecting and tracking method of movingvehicle[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 107-133.(in Chinese)
[5] ZIVKOVIC Z, HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780.
[6] LEE D S. Effective Gaussian mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
[7] 冯华文,龚声蓉,刘纯平.基于改进高斯混合模型的前景检测[J].计算机工程,2011,37(19):179-182.
FENG Hua-wen, GONG Sheng-rong, LIU Chun-ping. Foreground detection based on improved Gaussian mixture model[J]. Computer Engineering, 2011, 37(19): 179-182.(in Chinese)
[8] 刘 静,王 玲.混合高斯模型背景法的一种改进算法[J].计算机工程与应用,2010,46(13):168-170.
LIU Jing, WANG Ling. Improved algorithm of Gaussian mixture model for background subtraction[J]. Computer Engineering and Applications, 2010, 46(13): 168-170.(in Chinese)
[9] 李红波,唐培竣,吴 渝.Kalman滤波器对混合高斯背景建模的改进[J].计算机工程与应用,2009,45(24):162-164,245.
LI Hong-bo, TANG Pei-jun, WU Yu. Mixture Gaussian background modeling improved by Kalman filtering[J]. Computer Engineering and Applications, 2009, 45(24): 162-164, 245.(in Chinese)
[10] 陈祖爵,陈潇君,何 鸿.基于改进的混合高斯模型的运动目标检测[J].中国图象图形学报,2007,12(9):1585-1589.
CHEN Zu-jue, CHEN Xiao-jun, HE Hong. Moving object detection based on improved mixture Gaussian models[J]. Journal of Image and Graphics, 2007, 12(9): 1585-1589.(in Chinese)
[11] SEKI M, WADA T, FUJIWARA H, et al.Background subtraction based on cooccurrence of image variations[C]∥IEEE. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 2003: 65-72.
[12] HEIKKILA M, PIETIKAINEN M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.
[13] CHEN Y T, CHEN C S, HUANG C R, et al. Efficient hierarchical method for background subtraction[J]. Patten Recognition, 2006, 40(10): 2706-2715.
[14] 常晓夫,张文生,董维山.基于多种类视觉特征的混合高斯背景模型[J].中国图象图形学报,2011,16(5):829-834.
CHANG Xiao-fu, ZHANG Wen-sheng, DONG Wei-shan. Mixture of Gaussian background modeling method based on multi-category visual features[J]. Journal of Image and Graphics, 2011, 16(5): 829-834.(in Chinese)
[15] MASON M, DURIC Z. Using histograms to detect and track objects in color video[C]∥IEEE. Proceedings of the Applied Imagery Pattern Recognition Workshop. New York: IEEE, 2001: 154-159.
[16] NORIEGA P, BASCLE B, BERNIER O. Local kernel color histograms for background subtraction[C]∥ALPESH R, HELDER A, BRUNO E. Proceedings of the First International Conference on Computer Vision Theory and Applications. Setubal: INSTICC, 2006: 213-219.
[17] TSAI T, HUANG Y L, CHIANG T. Image retrieval based on dominant texture features[C]∥IEEE. Proceedings of the IEEE International Symposium on Industrial Electronics. New York: IEEE, 2006: 441-446.
[18] 王永忠,梁 彦,潘 泉,等.基于自适应混合高斯模型的时空背景建模[J].自动化学报,2009,35(4):371-378.
WANG Yong-zhong, LIANG Yan, PAN Quan, et al. Spatio-temporal background modeling based on adaptive mixture of Gaussians[J]. Acta Automatica Sinica, 2009, 35(4): 371-378.(in Chinese)