|Table of Contents|

Gradation fractal characteristic and mechanical indexes of super large stone asphalt mixture

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2013年01期
Page:
7-14
Research Field:
道路与铁道工程
Publishing date:

Info

Title:
Gradation fractal characteristic and mechanical indexes of super large stone asphalt mixture
Author(s):
JIANG Xiao-xia12 QIN Run-pu3 GAO Wen-yang4 SHA Ai-min1 CHANG Ming-feng1
1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China; 2. Hong Kong-Zhuhai-Macao Bridge Authority, Zhuhai 519015, Guangdong, China; 3. Guangxi Key Laboratory Cultivation Base of Road Structure and Materials, Guangxi Transportation Research Institute, Nanning 530007, Guangxi, China; 4. The Third RailwaySurvey and Design Institute Group Corporation, Tianjin 300251, China
Keywords:
road engineering super large stone asphalt mixture fractal theory mass fractal dimension mechanical index
PACS:
U414.75
DOI:
-
Abstract:
In order to quantificationally evaluate the gradation characteristic of super large stone asphalt mixture(SLSM), a method was put forward to calculate the aggregate mass fractal distribution function of SLSM based on fractal theory. The values of mass fractal dimension were obtained for SLSM-40 with different gradations, and a relational model between aggregate mass distribution and fractal dimension was established. The relationship between fractal dimension and the volume indexes of SLSM-40 was analyzed, and the mechanical indexes of SLSM-40 were studied by using strength test and simple performance test. Analysis result shows that all the volume indexes of SLSM-40 satisfy technical requirements when fractal dimension is about 2.60. SLSM-40 has good gradation homogeneity when fractal dimension is 2.55-2.60. Cohesion increases with the increase of particle size, and the contribution rate of SLSM-40 cohesion to overall strength is about 50%, which increases by 1-2 times compared with ordinary asphalt mixture, and internal friction angles reduce by 5°-10°. The compression rebound modulus of SLSM-40 increases by 1 869 MPa at 20 ℃, which is 2.6 times compared with AC-25. The dynamic modulus of SLSM-40 increases with the increase of loading frequency at different temperatures, and the change law of phase angle has larger difference compared with that of dynamic modulus at different temperatures and loading frequencies. Dynamic modulus index decreases with the increase of temperature, and the resistance to permanent deformation ability of SLSM-40 declines. 9 tabs, 1 fig, 16 refs.

References:

[1] YEGGONI M, BUTTON J W, ZOLLINGER D G. Fractals of aggregates correlated with creep in asphalt concrete[J]. Journal of Transportation Engineering, 1996, 122(1): 22-28.
[2] 刘建勋,李 波.基于级配分形的SUPERPAVE混合料设计参数预估[J].郑州大学学报:工学版,2010,31(1):26-29.LIU Jian-xun, LI Bo. Prediction of design parameters for SUPERPAVE mixtures based on the fractal law of aggregate gradation[J]. Journal of Zhengzhou University: Engineering Science, 2010, 31(1): 26-29.(in Chinese)
[3] 黄继成,黄 彭.沥青混合料集料分维数值和矿料间隙率的关系[J].同济大学学报:自然科学版,2007,35(11):1481-1485,1501.HUANG Ji-cheng, HUANG Peng. Numerical value relations of asphalt mixture aggregates’ fractal dimensions and voids in mineral aggregate[J]. Journal of Tongji University: Natural Science, 2007, 35(11): 1481-1485, 1501.(in Chinese)
[4] 杨瑞华,许志鸿.密级配沥青混合料集料分形分维与路用性能的关系[J].土木工程学报,2007,40(3):98-103,109.YANG Rui-hua, XU Zhi-hong. Relationship between fractal dimension and road performance of dense-gradation asphalt mixture[J]. China Civil Engineering Journal, 2007, 40(3): 98-103, 109.(in Chinese)
[5] 付其林,陈拴发,陈华鑫.开级配大粒径沥青碎石混合料的高温稳定性[J].长安大学学报:自然科学版,2010,30(2):20-23.FU Qi-lin, CHEN Shuan-fa, CHEN Hua-xin. High temperature stability of open-graded large stone asphalt mixes[J]. Journal of Chang’an University: Natural Science Edition, 2010, 30(2): 20-23.(in Chinese)
[6] 黄宝涛,田伟平,李家春,等.沥青路面抗滑性能定量评价的分形方法[J].中国公路学报,2008,21(4):12-17.HUANG Bao-tao, TIAN Wei-ping, LI Jia-chun, et al. Fractal method based on quantitative evaluation of asphalt pavement anti-slide performance[J]. China Journal of Highway and Transport, 2008, 21(4): 12-17.(in Chinese)
[7] 黄宝涛,梁 轶,崔 娥,等.沥青混合料抗车辙性能的分形描述方法[J].交通运输工程学报,2007,7(6):59-63.HUANG Bao-tao, LIANG Yi, CUI E, et al. Fractal description method of asphalt mixture rut resistance[J]. Journal of Traffic and Transportation Engineering, 2007, 7(6): 59-63.(in Chinese)
[8] 蒋双全,张争奇,杨 博.分形几何理论在沥青混合料研究中的应用[J].公路,2009(10):198-203.JIANG Shuang-quan, ZHANG Zheng-qi, YANG bo. Application of fractal geometry theory to study on asphalt mixture[J]. Highway, 2009(10): 198-203.(in Chinese)
[9] 陈国明,周纯秀,谭忆秋.粗集料表面纹理的分形评定及沥青混合料性能试验[J].交通运输工程学报,2009,9(4):1-5.CHEN Guo-ming, ZHOU Chun-xiu, TAN Yi-qiu. Fractal evaluation of surface texture for coarse aggregate and performance test of asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2009, 9(4): 1-5.(in Chinese)
[10] AMIN J S, AYATOLLAHI S, ALAMDARI A. Fractal characteristics of an asphaltene deposited heterogeneous surface[J]. Applied Surface Science, 2009, 256(1): 67-75.
[11] KOKKALIS A G, TSOHOS G H, PANAGOULI O K. Consideration of fractals potential in pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2002, 128(6): 591-595.
[12] EL GENDY A, SHALABY A. Mean profile depth of pavement surface macrotexture using photometric stereo techniques[J]. Journal of Transportation Engineering, 2007, 133(7): 433-440.
[13] LEONARDI G. Fractal dimension for the characterization of the porosity of asphalt concretes[J]. Archives of Civil Engineering, 2010, 56(4): 321-333.
[14] 刘中林,王富玉,郝培文,等.大粒径沥青混合料组成结构的研究[J].土木工程学报,2004,37(7):59-63.LIU Zhong-lin, WANG Fu-yu, HAO Pei-wen, et al. Study on composition and structure of LSAM[J]. China Civil Engineering Journal, 2004, 37(7): 59-63.(in Chinese)
[15] 王富玉,任立锋,刘元烈.大粒径沥青混合料的路用性能研究[J].公路交通科技,2003,20(5):6-9.WANG Fu-yu, REN Li-feng, LIU Yuan-lie. Study on pavement performance of LSAM[J]. Journal of Highway and Transportation Research and Development, 2003, 20(5): 6-9.(in Chinese)
[16] ZHAO Yong-li, HUANG Xiao-ming. Design method and performance for large stone porous asphalt mixtures[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2010, 25(5): 871-876.

Memo

Memo:
-
Last Update: 2013-03-30