[1] ZAREH S H, SARRAFAN A, KHAYYAT A A, et al. Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers[J]. Journal of Mechanical Science and Technology, 2012, 26(2): 323-334.
[2] CREWS J H, MATTSON M G, BUCKNER G D. Multi-objective control optimization for semi-active vehicle suspensions[J]. Journal of Sound and Vibration, 2011, 330(23): 5502-5516.
[3] MALEKSHAHI A, MIRZAEI M. Designing a non-linear tracking controller for vehicle active suspension systems using an optimization process[J]. International Journal of Automotive Technology, 2012, 13(2): 263-271.
[4] YIM S. Design of a robust controller for rollover prevention with active suspension and differential braking[J]. Journal of Mechanical Science and Technology, 2012, 26(1): 213-222.
[5] LIU Shu-bo, ZHAO Ding-xuan. H∞/generalized H2 static output feedback control method for active suspension[J]. China Journal of Highway and Transport, 2009, 22(4): 122-126.
[6] EBRAHIMI B, BOLANDHEMMAT H, KHAMESEE M B, et al. A hybrid electromagnetic shock absorber for active vehicle suspension systems[J]. Vehicle System Dynamics, 2011, 49(1/2): 311-332.
[7] RYU S, KIM Y, PARK Y. Robust H∞ preview control of an active suspension system with norm-bounded uncertainties[J]. International Journal of Automotive Technology, 2008, 9(5): 585-592.
[8] GAO Hui-jun, SUN Wei-chao, SHI Peng. Robust sampled-data H∞ control for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 238-245.
[9] DAVID S B, BOBROVSKY B Z. Actively controlled vehicle suspension with energy regeneration capabilities[J]. Vehicle System Dynamics, 2011, 49(6): 833-854.
[10] MONTAZERI-GH M, SOLEYMANI M. Investigation of the energy regeneration of active suspension system in hybrid electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3): 918-925.
[11] HUANG K, YU F, ZHANG Y. Active controller design for an electromagnetic energy-regenerative suspension[J]. International Journal of Automotive Technology, 2011, 12(6): 877-885.
[12] CHEN Shi-an, HE Ren, LU Sen-lin. New reclaiming energy suspension and its working principle[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 177-182.
[13] YU Chang-miao, WANG Wei-hua, WANG Qing-nian. Damping characteristic and its influence factors in energy regenerative suspension[J]. Journal of Jilin University: Engineering and Technology Edition, 2010, 40(6): 1482-1486.
[14] YU Chang-miao, WANG Wei-hua, WANG Qing-nian. Design of electromagnetic energy regenerative suspension system and analysis of energy conservation[J]. Automobile Technology, 2010(2): 21-25.
[15] HUANG Kun, YU Fan, ZHANG Yong-chao. Active control of energy-regenerative electromagnetic suspension based on energy flow analysis[J]. Journal of Shanghai Jiaotong University, 2011, 45(7): 1068-1073.
[16] TAO Yong-hua. Application of New PID Control[M]. 2nd Edition. Beijing: China Machine Press, 2003.
[17] ZENG Jie-ru, GU Zheng-qi, LI Wei-ping, et al. A research on the fuzzy PID control for vehicle semi-active suspension based on genetic algorithm[J]. Automotive Engineering, 2010, 32(5): 429-433
[18] WANG Chen, WANG Shi-cheng. Parameters setting of PID controller based on genetic algorithm[J]. Computer Simulation, 2005, 22(10): 112-114, 143.
[19] JIN Y, YU D J. Adaptive neuron control using an integrated error approach with application to active suspensions[J]. International Journal of Automotive Technology, 2008, 9(3): 329-335.
[20] CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weights in a suspension LQG control[J]. Journal of Vibration and Shock, 2008, 27(2): 65-68, 176.