|Table of Contents|

Extreme short-time prediction technology of high speed unmanned surface vehicle motion

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2012年01期
Page:
38-44
Research Field:
载运工具运用工程
Publishing date:

Info

Title:
Extreme short-time prediction technology of high speed unmanned surface vehicle motion
Author(s):
MA Wei-jiaSHI Sheng-zheZOU JinPANG Yong-jieZHU Kai
School of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,Heilongjiang,China
Keywords:
ship engineering unmanned surface vehicle time series short-time prediction seakeeping performance ARIMA model
PACS:
U661.32
DOI:
-
Abstract:
Multiple seasonal ARIMA(auto regressive integrated moving average) model based on time series was used,the extreme short-time prediction technology of unmanned surface vehicle motion was studied based on the seakeeping test data of boat model in regular wave.ARMA(auto regressive moving average) models with trend difference and seasonal difference were adopted,Akaike information criterion and white noise inspection method were carried out,and the chosen best model was validated.Extreme short-time prediction in twenty steps was made for unmanned surface vehicle.Calculation result indicates that the maximum errors are not more than 6% in the former ten-step predictions of acceleration,heave and pitch.With the increase of prediction step,the error has enlarging trend,the maximum error reaches to 16.68% in the following ten-step prediction of acceleration.So extreme short-time prediction technology is effective.

References:

[1] 高 双,朱齐丹,李 磊.滑行艇高速运动建模与姿态控制仿真[J].系统仿真学报,2008,20(16):4461-4465.GAO Shuang, ZHU Qi-dan, LI Lei. Simulation of sliding ship’s high-speed modeling and attitude control[J]. Journal of System Simulation, 2008, 20(16): 4461-4465.(in Chinese)
[2] 陈鸶鹭,程海边.基于模糊神经网络控制的水面无人艇建模与仿真[J].舰船科学技术,2010,32(11):134-136,156.CHEN Si-lu, CHENG Hai-bian. Modeling and simulation based on fuzzy neural network for unmanned surface vehicle[J]. Ship Science and Technology, 2010, 32(11): 134-136, 156.(in Chinese)
[3] 赵希人,彭秀艳,沈 艳,等.舰船运动极短期建模预报的研究现状[J].船舶工程,2002(3):4-8.ZHAO Xi-ren, PENG Xiu-yan, SHEN Yan, et al.Study status quo of extremely short-time modeling and predicting of ship motion[J]. Ship Engineering, 2002(3): 4-8.(in Chinese)
[4] 彭秀艳,赵希人,吕淑萍,等.具有艏前波观测量的大型舰船姿态运动预报[J].系统仿真学报,2002,14(6):809-814.PENG Xiu-yan, ZHAO Xi-ren, LU Shu-ping, et al. Prediction of big ship motion with wave survey[J]. Journal of System Simulation, 2002, 14(6): 809-814.(in Chinese)
[5] 赵希人,彭秀艳,吕淑萍,等.具有艏前波观测量的大型舰船姿态运动极短期预报[J].船舶力学,2003,7(2):39-44.ZHAO Xi-ren, PENG Xiu-yan, LU Shu-ping, et al. Extreme short prediction of big ship motion having wave survey[J]. Journal of Ship Mechanics, 2003, 7(2): 39-44.(in Chinese)
[6] 赵 源,腾大予.多维AR(p)模型在预报舰船运动中的应用[J].现代防御技术,2003,31(4):52-55,60.ZHAO Yuan, TENG Da-yu. Application of multidimensional AR(p)model in forecasting the state of ship movement[J]. Modern Defence Technology, 2003, 31(4): 52-55, 60.(in Chinese)
[7] PENG Xiu-yan, ZHAO Xi-ren, XU Lin-lin. Real-time prediction algorithm research of ship attitude motion based on order selection with corner condition[C]∥IEEE. 1st International Symposium on Systems and Control in Aerospace and Astronautics. Harbin: IEEE, 2006: 1070-1075.
[8] 马 洁,韩蕴韬,李国斌.基于自回归模型的船舶姿态运动预报[J].舰船科学技术,2006,28(3):28-30.MA Jie, HAN Yun-tao, LI Guo-bin. Prediction of ship pitching motion based on AR method[J]. Ship Science and Technology, 2006, 28(3): 28-30.(in Chinese)
[9] 马 洁,李国斌.船舶横摇运动的时间序列预报[J].北京机械工业学院学报,2006,21(1):4-7.MA Jie, LI Guo-bin. Time series prediction of ship rolling[J]. Journal of Beijing Institute of Machinery, 2006, 21(1): 4-7.(in Chinese)
[10] 彭秀艳,赵希人,高奇峰.船舶姿态运动实时预报算法研究[J].系统仿真学报,2007,19(2):267-271.PENG Xiu-yan, ZHAO Xi-ren, GAO Qi-feng. Research on real-time prediction algorithm of ship attitude motion[J]. Journal of System Simulation, 2007, 19(2): 267-271.(in Chinese)
[11] WEI Dong, YE Jia-wei, WU Xi, et al. Time series prediction for generalized heave displacement of a shipborne helicopter platform[C]∥IEEE. 2008 ISECS International Colloquium on Computing, Communication, Control, and Management. Washington DC: IEEE, 2008: 80-84.
[12] 张 恒,李积德,赵晓东.基于系统辨识方法求解船舶非线性运动响应[J].大连海事大学学报,2008,34(4):67-71.ZHANG Heng, LI Ji-de, ZHAO Xiao-dong. Nonlinear motion response of ship based on system identification method[J]. Journal of Dalian Maritime University, 2008, 34(4): 67-71.(in Chinese)
[13] 杨奕飞,王 恒.基于时间序列预报模型的船摇前馈量计算[J].现代雷达,2009,31(10):51-54.YANG Yi-fei, WANG Heng. Calculation method of ship-sway feedforward compensation based on time series prediction model[J]. Modern Radar, 2009, 31(10): 51-54.(in Chinese)
[14] 马 洁.船舶纵摇运动预报AR法和多层递阶方法比较研究[C]∥中国自动化学会.2009中国智能自动化会议论文集.北京:中国自动化学会,2009:1040-1047.MA Jie. The study of comparisons among AR method and multi-level recursive method to ships’ pitching movment[C]∥Chinese Association of Automation. Proceedings of 2009 Chinese Intelligentize Robotization. Beijing: Chinese Association of Automation, 2009: 1040-1047.(in Chinese)
[15] 武瑞花.船舶横摇运动时间序列的分析、建模与预报研究[D].大连:大连海事大学,2008.WU Rui-hua. Ship rolling time series analysis, modeling and prediction[D]. Dalian: Dalian Maritime University, 2008.(in Chinese)

Memo

Memo:
-
Last Update: 2012-02-28