|Table of Contents|

Parameter selection of support vector machine based on stepped-up chaos optimization algorithm(PDF)

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

Issue:
2010年02期
Page:
122-126
Research Field:
交通信息工程及控制
Publishing date:
2010-04-20

Info

Title:
Parameter selection of support vector machine based on stepped-up chaos optimization algorithm
Author(s):
LI Dong-qin1 3 WANG Li-zheng2 GUAN Yi-feng1 XU Hai-xiang2
1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China; 2. School of Transportation, Wuhan University of Technology, Wuhan 430063, Hubei, China; 3. Jiangsu Modern Shipbuilding Technology Ltd., Zhenjiang 212003, Jiangsu, China
Keywords:
support vector machine stepped-up chaos optimization parameter optimization throughput prediction
PACS:
U652.14
DOI:
-
Abstract:
In order to analyze the parameter selection of support vector machine(SVM), penalty coefficient, insensitive coefficient and width coefficient in radial basis function(RBF)were used as optimization variables, the former searching formula was changed, and the third searching time was added. A new improved stepped-up chaos optimization algorithm(ISCOA)was proposed by adopting the Chebyshev mapping instead of Logistic mapping to form initial chaos serial. The new algorithm was used in artificial data set and real data set, and was compared with traditional cross validation method. Test result indicates that the running time is cut down at least 23.43%, and the precision improves at least 6.31% by using ISCOA in artificial data set. The predicted value is more close to real value, and the relative errors are controlled under 3.13% in real data set. So ISCOA has higher prediction precision and optimization effect. 3 tabs, 3 figs, 12 refs.

References:

[1] LIU Huan-jun,WANG Yao-nan, LU Xiao-fen. A method to choose kernel function and its parameters for support vector machines[C]∥South China University of Technology. Pro-ceedings of the Fourth International Conference on Machine Learning and Cybernetics. Guangzhou: Springer-Verlag, 2005: 4277-4280.
[2] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[3] CHU W, KEERTHI S S. New approaches to support vector ordinal regression[C]∥University of Bonn. Proceedings of the 22nd International Conference on Machine Learning. Bonn: ACM, 2005: 145-152.
[4] KHAN M S, COULIBALY P. Application of support vector machine in lake water level prediction[J]. Journal of Hydrologic Engineering, 2006, 11(3): 199-205.
[5] 张旭东,陈 锋,高 隽,等.稀疏贝叶斯及其在时间序列预测中的应用[J].控制与决策,2006,21(5):585-588. ZHANG Xu-dong, CHEN Feng, GAO Jun, et al. Sparse Bayesian and its application to time series forecasting[J]. Conrol and Decision, 2006, 21(5): 585-588.(in Chinese)
[6] WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
[7] DONG J X, KRZYZAK A, SUEN C Y. Fast SVM training algorithm with decomposition on very large data sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 603-618.
[8] 刘 胜,李妍妍.自适应GA-SVM参数选择算法研究[J].哈尔滨工程大学学报,2007,28(4):398-402. LIU Sheng, LI Yan-yan. Parameter selection algorithm for support vector machines based on adaptive genetic algorithm[J]. Journal of Harbin Engineering University, 2007, 28(4): 398-402.(in Chinese)
[9] CAWLEY G C, TALBOT N L C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines[J]. Neural Networks, 2004, 17(10): 1467-1475.
[10] 李 旲,胡云昌,曹宏铎.加速混沌优化方法及其应用[J].系统工程学报,2002,17(1):41-44. LI Ying, HU Yun-chang, CAO Hong-duo. Stepped-up chaos optimization algorithm and its application[J]. Journal of Systems Engineering, 2002, 17(1): 41-44.(in Chinese)
[11] 李冬琴,王呈方,王丽铮.基于单参数的Lagrangian支持向量回归算法及其应用[J].中国航海,2007(3):73-76. LI Dong-qin, WANG Cheng-fang, WANG Li-zheng. A single-parameter Lagrangian support vector regression and its application[J]. Navigation of China, 2007(3): 73-76.(in Chinese)
[12] 李冬琴,王丽铮,王呈方.一种新的支持向量回归算法及其在集装箱吞吐量预测中的应用[J].水运工程,2007(5):9-12. LI Dong-qin, WANG Li-zheng, WANG Cheng-fang. Prediction of container throughput using a single-parameter Lagrangian support vector regression[J]. Port and Waterway Engineering, 2007(5): 9-12.(in Chinese)

Memo

Memo:
-
Last Update: 2010-04-20