[1]李 苗,马亚群,王 宇,等.基于全尺寸台架试验的中低速磁浮列车悬浮架强度评估[J].交通运输工程学报,2023,23(06):206-215.[doi:10.19818/j.cnki.1671-1637.2023.06.013]
 LI Miao,MA Ya-qun,WANG Yu,et al.Strength evaluation of levitation frame for medium and low speed maglev train based on full-scale bench test[J].Journal of Traffic and Transportation Engineering,2023,23(06):206-215.[doi:10.19818/j.cnki.1671-1637.2023.06.013]
点击复制

基于全尺寸台架试验的中低速磁浮列车悬浮架强度评估()
分享到:

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

卷:
第23卷
期数:
2023年06期
页码:
206-215
栏目:
载运工具运用工程
出版日期:
2023-12-30

文章信息/Info

Title:
Strength evaluation of levitation frame for medium and low speed maglev train based on full-scale bench test
文章编号:
1671-1637(2023)06-0206-10
作者:
李 苗1马亚群1王 宇2罗世辉1马卫华1雷 成3
(1.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031; 2.中车长春轨道客车股份有限公司,吉林 长春 130062; 3.郑州铁路职业技术学院 河南省轨道交通智能安全工程技术研究中心,河南 郑州 451460)
Author(s):
LI Miao1 MA Ya-qun1 WANG Yu2 LUO Shi-hui1 MA Wei-hua1 LEI Cheng3
(1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. CRRC Changchun Railway Vehicles Co., Ltd., Changchun 130062, Jilin, China; 3. Henan Engineering Research Center of Rail Transit Intelligent Security, Zhengzhou Railway Vocational and Technical College, Zhengzhou 451460, Henan, China)
关键词:
车辆工程 中低速磁浮 现场试验 悬浮架 台架试验 强度评估
Keywords:
vehicle engineering medium and low speed maglev field test levitation frame bench test strength evaluation
分类号:
U237
DOI:
10.19818/j.cnki.1671-1637.2023.06.013
文献标志码:
A
摘要:
为评估某中低速磁浮列车悬浮架构架是否满足强度要求,利用自主研发的全尺寸中低速磁浮强度试验台对该悬浮架构架开展了静强度与疲劳强度试验,基于有限元和多体动力学仿真结果,确定了悬浮架构架的应力集中部位与承载特性; 据此,在悬浮架构架上合理布置了系列测点,测量了车辆在超常载荷、模拟主要运营载荷和模拟特殊运营载荷3类工况下悬浮架构架的应变响应信号,根据悬浮架构架不同部位的材料特性,通过转换计算评估了悬浮架构架的应力水平。研究结果表明:在静强度试验中,悬浮架构架的较大应力点主要分布于托臂拐角、支撑轮安装座与防侧滚梁连接处、停放制动滑橇安装座等处,而在疲劳强度试验中的薄弱点主要为纵梁与托臂连接的焊缝处; 相比于列车的常规运行工况,在悬浮失效、超载落车制动等特殊运行条件下,悬浮架构架的静强度和疲劳强度的应力幅值分别增加了1.06和4.77倍; 所有测试工况下悬浮架构架受到的最大拉应力、最大压应力分别为67.22、-20.30 MPa,且最小安全系数为1.71,说明悬浮架构架满足结构强度要求; 所有测试数据结果均在各自材料的Goodman-Smith疲劳极限图包络线内,说明悬浮架构架满足疲劳强度要求; 经渗透探伤查验,悬浮架构架的任何位置上均未发现裂纹,验证了悬浮架构架疲劳强度评估结果的可靠性。
Abstract:
In order to evaluate whether the levitation frame of a medium and low speed maglev train meets the requirements of strength, the static strength and fatigue strength tests of the levitation frame were conducted by using the self-developed full-scale medium and low speed maglev strength test bench. According to the finite element analysis and the results obtained from multi-body dynamics simulation, the stress concentration position and bearing characteristics shown by the levitation frame were determined, followed by the reasonable arrangement of measuring points in a series on the levitation frame. The signals of strain response shown by the levitation frame of the train under three types of working conditions were measured, including extraordinary load, simulated main operation load, and simulated special operation load. Based on the material properties displayed by different parts of the levitation frame, the stress level of the levitation frame was evaluated through transformation calculation. Research results show that in the static strength test, large stress points of the levitation frame are mainly distribute at the corner of the bracket, the connection point between the mounting seat of support wheels and the anti-rolling beam, and the mounting seat of the parking brake sled, while the weak point obtained from the fatigue strength test is mainly at the weld joint between the longitudinal beam and the bracket. In comparison with the conventional operating conditions of the train, the stress amplitude values of the static strength and fatigue strength of the levitation frame increase by 1.06 and 4.77 times respectively under special operation conditions such as levitation failure and overloading braking. The maximum tensile stress and compressive stress of the levitation frame under all test conditions are 67.22 and -20.30 MPa, respectively, with the minimum safety factor as 1.71, indicating that the levitation frame meets the structural strength requirements. All the test data are within the envelope of the Goodman-Smith fatigue limit diagram of the corresponding material, indicating that the levitation frame meets the fatigue strength requirements. Through penetration inspection, it is identified that no cracks are found at any position of the levitation frame, which verifies the reliability of fatigue strength evaluation results of the levitation frame.4 tabs, 9 figs, 31 refs.

参考文献/References:

[1] 翟婉明,赵春发.现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016,51(2):209-226.
ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.(in Chinese)
[2] 徐 飞,罗世辉,邓自刚.磁悬浮轨道交通关键技术及全速度域应用研究[J].铁道学报,2019,41(3):40-49.
XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49.(in Chinese)
[3] ZHANG Min, LUO Shi-hui, GAO Chang, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816.
[4] 蔡文锋, 颜 华,杨 平.中低速磁浮轨道系统特点及工程适应性分析[J].铁道工程学报,2015,32(2):54-59.
CAI Wen-feng, YAN Hua, YANG Ping. Analysis of the characteristics and engineering adaptability of track system for medium and low speed maglev transit[J]. Journal of Railway Engineering Society, 2015, 32(2): 54-59.(in Chinese)
[5] 马卫华, 罗世辉, 张 敏,等.中低速磁浮车辆研究综述[J].交通运输工程学报,2021,21(1):199-216.
MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216.(in Chinese)
[6] 胡齐斌.新型中低速磁浮列车悬浮架强度试验方法研究[D].成都:西南交通大学,2020.
HU Qi-bin. Research on the strength test method of the levitation bogie for new-type mid-low speed maglev vehicle[D]. Chengdu: Southwest Jiaotong University, 2020.(in Chinese)
[7] 杨 磊.中低速磁浮列车转向架特性分析及计算[D].长沙:国防科学技术大学,2003.
YANG Lei. Analysis and calculation of bogie characteristics of medium and low speed maglev vehicle[D]. Changsha: National University of Defense Technology, 2003.(in Chinese)
[8] 周 益,刘 放,李 飞,等.运用SolidWorks和ANSYS的磁浮列车悬浮架结构有限元分析[J].现代制造工程,2012(8):17-20.
ZHOU Yi, LIU Fang, LI Fei, et al. Finite element analysis of the levitation chassis of maglev vehicle based on SolidWorks and ANSYS[J]. Modern Manufacturing Engineering, 2012(8): 17-20.(in Chinese)
[9] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925.
[10] ZHOU Dan-feng, HANSEN C H, LI Jie, et al. Review of coupled vibration problems in EMS maglev vehicles[J]. International Journal of Acoustics and Vibration, 2010, 15(1): 10-23.
[11] XIU Rui-xian, SPIRYAGIN M, WU Qing, et al. Fatigue life assessment methods for railway vehicle bogie frames[J]. Engineering Failure Analysis, 2020, 116: 104725.
[12] KASSNER M. Fatigue strength analysis of a welded railway vehicle structure by different methods[J]. International Journal of Fatigue, 2012, 34(1): 103-111.
[13] ODA Y, YAGI T, OKINO T, et al. Fatigue life estimation for welds of truck frames for rolling stock using stress frequency in service load[J]. Japan Society of Mechanical Engineers, 2007, 73(10): 1171-1176.
[14] GRASSO M, XU Y, RUSSO R, et al. Mixed mode fatigue crack propagation behaviour of aluminium F357 alloy[J]. Engineering Failure Analysis, 2018(90): 463-475.
[15] SARUNAC R. “Low Speed” magnetic levitation vehicle in the US[C]∥IEEE. Proceedings of the IEEE/ASME Joint Railroad Conference. New York: IEEE, 1999: 130-143.
[16] HAN S W, WOO K J. Evaluation of dynamic fatigue life for maglev bogie frame[J]. Journal of the Korean Society for Railway, 2010, 13(1): 1-8.
[17] KIM J S. Fatigue assessment of tilting bogie frame for Korean tilting train: analysis and static tests[J]. Engineering Failure Analysis, 2006, 13(8): 1326-1337.
[18] HAN J W, KIM J D, SONG S Y. Fatigue strength evaluation of a bogie frame for urban maglev train with fatigue test on full-scale test rig[J]. Engineering Failure Analysis, 2013, 31: 412-420.
[19] 吴开洪,崔建昆.磁悬浮列车转向架的变形状态分析[J].现代机械,2017(1):34-36.
WU Kai-hong, CUI Jian-kun. The deformation state analysis of the bogie on a maglev train[J]. Modern Machinery, 2017(1): 34-36.(in Chinese)
[20] 罗圩琪,许 平,谢卓君.磁浮列车走行机构结构优化研究[J].城市轨道交通研究,2011,14(11):86-89,92.
LUO Yu-qi, XU Ping, XIE Zhuo-jun. Research on structure optimization of running gear of maglev train[J]. Urban Mass Transit, 2011, 14(11): 86-89, 92.(in Chinese)
[21] 姚生军,汤劲松,李东锋.中低速磁浮列车动载荷及动应力测试研究[J].铁道车辆,2013,51(5):1-4.
YAO Sheng-jun, TANG Jin-song, LI Dong-feng. Research on dynamic load and stress measurement for maglev trains with middle and low speed[J]. Rolling Stock, 2013, 51(5): 1-4.(in Chinese)
[22] 宗凌潇.时速140 km新型中低速磁浮列车走行机构研究分析[D].成都:西南交通大学,2016.
ZONG Ling-xiao. A research to running mechanism of new medium-low speed maglev train with its speed being 140 km·h-1[D]. Chengdu: Southwest Jiaotong University, 2016.(in Chinese)
[23] 吴元科,刘 放,张 斌,等.长定子中低速磁浮列车悬浮架疲劳寿命分析[J].现代制造工程,2016(8):54-59, 94.
WU Yuan-ke, LIU Fang, ZHANG Bin, et al. Fatigue life analysis of levitation chassis of long stator maglev vehicle[J]. Modern Manufacturing Engineering, 2016(8): 54-59, 94.(in Chinese)
[24] 彭奇彪,罗华军,佟来生,等.中低速磁浮车辆悬浮架的技术特征[J].电力机车与城轨车辆,2012,35(6):7-11.
PENG Qi-biao, LUO Hua-jun, TONG Lai-sheng, et al. Characteristics of maglev bogie for mid-low speed maglev vehicle[J]. Electric Locomotives and Mass Transit Vehicles, 2012, 35(6): 7-11.(in Chinese)
[25] 迟振华.长定子中低速磁浮列车悬浮架疲劳强度研究[D].成都:西南交通大学,2014.
CHI Zhen-hua. Research on fatigue strength for levitation chassis of long stator middle-low speed maglev vehicle[D]. Chengdu: Southwest Jiaotong University, 2014.(in Chinese)
[26] 李 岑,姚毓瑾,虞大联,等.基于动力学仿真分析的磁悬浮列车悬浮架载荷特征研究[J].北京交通大学学报,2021,45(3):118-125.
LI Cen, YAO Yu-jin, YU Da-lian, et al. Study on load characteristics of maglev train suspension frame based on dynamics simulation analysis[J]. Journal of Beijing Jiaotong University, 2021, 45(3): 118-125.(in Chinese)
[27] 赵 军.中低速磁浮列车车体轻量化设计[D].成都:西南交通大学,2017.
ZHAO Jun. Light weight design of medium-low speed maglev train carbody[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[28] 李 苗,马卫华,龚俊虎,等.中低速磁浮车辆-桥梁耦合系统动力性能试验[J].交通运输工程学报,2022,22(1):141-154.
LI Miao, MA Wei-hua, GONG Jun-hu, et al. Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 141-154.(in Chinese)
[29] 魏德豪,罗世辉,王 晨.牵引杆对中低速磁浮动力学性能影响分析[J].机械设计与制造,2018(12):92-95.
WEI De-hao, LUO Shi-hui, WANG Chen. Analysis on the influences of traction rod to medium-low speed maglev dynamic performance[J]. Machinery Design and Manufacture, 2018(12): 92-95.(in Chinese)
[30] 任治军.中低速磁浮列车转向架疲劳寿命分析和仿真[D].长沙:国防科学技术大学,2005.
REN Zhi-jun. Fatigue analysis and simulation of maglev bogie in low and medium speed maglev train[D]. Changsha: National University of Defense Technology, 2005.(in Chinese)
[31] 沈彩瑜.铁道车辆转向架构架疲劳强度研究[D].成都:西南交通大学,2014.
SHEN Cai-yu. Fatigue strength analysis of the welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2014.(in Chinese)

相似文献/References:

[1]高 浩,罗 仁,池茂儒,等.车辆系统空气弹簧失气安全性分析[J].交通运输工程学报,2012,12(03):60.
 GAO Hao,LUO Ren,CHI Mao-ru,et al.Safety analysis of railway vehicle in leakage process of air spring[J].Journal of Traffic and Transportation Engineering,2012,12(06):60.
[2]牛润新,夏静霆,汪小华,等.智能车辆路径巡航和自主避障的触须算法[J].交通运输工程学报,2010,10(06):53.
 NIU Run-xin,XIA Jing-ting,WANG Xiao-hua,et al.Tentacle algorithm of obstacle avoidence and autonomous driving for intelligent vehicle[J].Journal of Traffic and Transportation Engineering,2010,10(06):53.
[3]姚曙光,田红旗,许 平.重载敞车车体结构轻量化设计[J].交通运输工程学报,2011,11(01):31.
 YAO Shu-guang,TIAN Hong-qi,XU Ping.Lightening design of carbody structure for heavy haul gondola[J].Journal of Traffic and Transportation Engineering,2011,11(06):31.
[4]张 剑,王玉艳,金学松,等.改善轮轨接触状态的车轮型面几何设计方法[J].交通运输工程学报,2011,11(01):36.
 ZHANG Jian,WANG Yu-yan,JIN Xue-song,et al.Geometric design method of wheel profile for improving wheel and rail contact status[J].Journal of Traffic and Transportation Engineering,2011,11(06):36.
[5]许明春,曾 京.纵向耦合独立旋转车轮转向架导向机理[J].交通运输工程学报,2011,11(01):43.
 XU Ming-chun,ZENG Jing.Guiding mechanism of longitudinal coupling bogie with independently rotating wheels[J].Journal of Traffic and Transportation Engineering,2011,11(06):43.
[6]宋鹏云,张继业,张克跃.铁道车辆横向能量回馈式主动悬挂鲁棒控制[J].交通运输工程学报,2011,11(02):52.
 SONG Peng-yun,ZHANG Ji-ye,ZHANG Ke-yue.Robust control of lateral self-powered active suspension for railway vehicle[J].Journal of Traffic and Transportation Engineering,2011,11(06):52.
[7]吴 磊,钟硕乔,金学松,等.车轮多边形化对车辆运行安全性能的影响[J].交通运输工程学报,2011,11(03):47.
 WU Lei,ZHONG Shuo-qiao,JIN Xue-song,et al.Influence of polygonal wheel on running safety of vehicle[J].Journal of Traffic and Transportation Engineering,2011,11(06):47.
[8]刘加利,张继业,张卫华.高速列车车内中高频气动噪声计算方法[J].交通运输工程学报,2011,11(03):55.
 LIU Jia-li,ZHANG Ji-ye,ZHANG Wei-hua.Calculation method of interior aerodynamic noises with middle and high frequencies for high-speed train[J].Journal of Traffic and Transportation Engineering,2011,11(06):55.
[9]丁军君,孙树磊,李 芾,等.重载货车车轮磨耗仿真[J].交通运输工程学报,2011,11(04):56.
 DING Jun-jun,SUN Shu-lei,LI Fu,et al.Simulation of wheel wear for heavy haul freight car[J].Journal of Traffic and Transportation Engineering,2011,11(06):56.
[10]杨春雷,李 芾,付茂海,等.25 t轴载外径向臂径向转向架动力学分析[J].交通运输工程学报,2010,10(05):30.
 YANG Chun-lei,LI Fu,FU Mao-hai,et al.Dynamics analysis of 25 t axle load steering bogie with radial arm[J].Journal of Traffic and Transportation Engineering,2010,10(06):30.
[11]张 敏,范屹立,马卫华,等.滑差频率对磁浮车辆运行性能的影响[J].交通运输工程学报,2019,19(05):64.
 ZHANG Min,FAN Yi-li,MA Wei-hua,et al.Influence of slip frequency on running performance of maglev vehicle[J].Journal of Traffic and Transportation Engineering,2019,19(06):64.
[12]马卫华,罗世辉,张 敏,等.中低速磁浮车辆研究综述[J].交通运输工程学报,2021,21(01):199.[doi:10.19818/j.cnki.1671-1637.2021.01.009]
 MA Wei-hua,LUO Shi-hui,ZHANG Min,et al.Research review on medium and low speed maglev vehicle[J].Journal of Traffic and Transportation Engineering,2021,21(06):199.[doi:10.19818/j.cnki.1671-1637.2021.01.009]
[13]李 苗,马卫华,龚俊虎,等.中低速磁浮车辆-桥梁耦合系统动力性能试验[J].交通运输工程学报,2022,22(01):141.[doi:10.19818/j.cnki.1671-1637.2022.01.012]
 LI Miao,MA Wei-hua,GONG Jun-hu,et al.Dynamic performance test of medium and low speed maglev vehicle-bridge coupled system[J].Journal of Traffic and Transportation Engineering,2022,22(06):141.[doi:10.19818/j.cnki.1671-1637.2022.01.012]
[14]刘清辉,马卫华,单 磊,等.基于试验数据的中低速磁浮列车电磁铁结构参数分析[J].交通运输工程学报,2023,23(06):232.[doi:10.19818/j.cnki.1671-1637.2023.06.015]
 LIU Qing-hui,MA Wei-hua,SHAN Lei,et al.Analysis of electromagnet structure parameters of medium and low speed maglev train based on test data[J].Journal of Traffic and Transportation Engineering,2023,23(06):232.[doi:10.19818/j.cnki.1671-1637.2023.06.015]

备注/Memo

备注/Memo:
收稿日期:2023-06-25
基金项目:国家自然科学基金项目(51875483); 牵引动力国家重点实验室自主研究课题(2020TPL-T01,2020TPL-T04)
作者简介:李 苗(1991-), 男, 四川营山人, 西南交通大学工学博士研究生, 从事磁浮列车动力学及悬浮架设计研究。
导师简介:罗世辉(1964-), 男, 江西赣州人, 西南交通大学教授, 工学博士。
通讯作者:马亚群(1999-), 男, 山东菏泽人, 西南交通大学工程师。
更新日期/Last Update: 2023-12-30