[1]包卫星,李 伟,毛雪松,等.冻融循环条件下盐渍化风积沙力学特性[J].交通运输工程学报,2023,23(06):114-124.[doi:10.19818/j.cnki.1671-1637.2023.06.005]
 BAO Wei-xing,LI Wei,MAO Xue-song,et al.Mechanical properties of salinized aeolian sand under freeze-thaw cycles[J].Journal of Traffic and Transportation Engineering,2023,23(06):114-124.[doi:10.19818/j.cnki.1671-1637.2023.06.005]
点击复制

冻融循环条件下盐渍化风积沙力学特性()
分享到:

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

卷:
第23卷
期数:
2023年06期
页码:
114-124
栏目:
道路与铁道工程
出版日期:
2023-12-30

文章信息/Info

Title:
Mechanical properties of salinized aeolian sand under freeze-thaw cycles
文章编号:
1671-1637(2023)06-0114-11
作者:
包卫星李 伟毛雪松陈 锐秦 川刘亚伦
(长安大学 公路学院,陕西 西安 710064)
Author(s):
BAO Wei-xing LI Wei MAO Xue-song CHEN Rui QIN Chuan LIU Ya-lun
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
路基工程 风积沙 三轴试验 冻融循环 含盐量 应力-应变 劣化模型
Keywords:
subgrade engineering aeolian sand triaxial test freeze-thaw cycle salt content stress-strain deterioration model
分类号:
U416.1
DOI:
10.19818/j.cnki.1671-1637.2023.06.005
文献标志码:
A
摘要:
为研究季冻区沙漠边缘盐渍化风积沙力学特性,在冻融循环条件下对不同含盐量风积沙开展了三轴不固结不排水剪切试验,为研究冻融循环后不同含盐量风积沙应力-应变关系曲线与抗剪强度的劣化规律,提出了一种考虑围压与冻融循环次数条件下修正的邓肯-张模型,并引入抗剪强度劣化度描述风积沙强度衰减速度,提出了冻融循环次数与含盐量对风积沙抗剪强度的耦合作用计算公式。研究结果表明:不同冻融循环次数、含盐量与围压下风积沙应力-应变曲线均表现为应变软化型,冻融循环状态下的盐渍化风积沙受到温度与盐分的耦合作用,随着冻融循环次数与含盐量的增加,风积沙应变软化速率显著降低; 修正的邓肯-张模型可以较好地描述风积沙应变软化特征,不同冻融循环次数下风积沙初始回弹模量随围压增大而增大,随冻融循环次数增加先减小后缓慢增加; 在冻融条件下,无盐风积沙抗剪强度劣化速率较慢,而对于含盐风积沙,土中的盐分与水分相变加快了风积沙抗剪强度的劣化速率,使得风积沙抗剪强度迅速降低; 对于不同围压下的风积沙,其强度变化规律相似,即在经历初次冻融循环后抗剪强度显著下降,并随着冻融循环次数的增加,强度劣化速率逐渐趋于稳定,风积沙抗剪强度劣化度随冻融循环次数增加呈双曲线递增,随含盐量的增大呈线性递增趋势。
Abstract:
In order to study the mechanical properties of salinized aeolian sand at the edge of the desert in the monsoon freezing zone, triaxial unconsolidated and undrained shear tests were carried out on the aeolian sands with different salt contents under freeze-thaw cycle conditions. To study the stress-strain relationship curves and deterioration laws of shear strengths of aeolian sands with different salt contents after freeze-thaw cycles, a modified Duncan-Zhang model considering the conditions of perimeter pressure and the number of freeze-thaw cycles was proposed. The shear strength deterioration degree was introduced to describe the rate of strength decay of aeolian sand, and the formula for calculating the coupling effect of the number of freeze-thaw cycles and salt content on the shear strength of aeolian sand was proposed. Research results show that the stress-strain curves of aeolian sands with different numbers of freeze-thaw cycles, salt contents, and perimeter pressures are all the strain-softening type. The salinized aeolian sand under freeze-thaw cycles is subjected to the coupling of temperature and salinity, and the strain softening rate of aeolian sand decreases significantly with the increases in the number of freeze-thaw cycles and salt content. The modified Duncan-Zhang model can better characterize the strain softening of aeolian sand. The initial resilience moduli of aeolian sand under different numbers of freeze-thaw cycles increase with the increase in the perimeter pressure, and decrease first and then increase slowly with the number of freeze-thaw cycles. Under the freeze-thaw conditions, the deterioration rate of shear strength of unsalted aeolian sand is slow. In the case of the salinized aeolian sand, the phase changes in the salt and moisture in the soil accelerate the deterioration rate of aeolian sand shear strength, leading to a rapid decrease in the shear strength of aeolian sand. For the aeolian sand under different perimeter pressures, the patterns of strength change are similar, and the shear strengths decrease significantly after the initial freeze-thaw cycle. As the number of freeze-thaw cycles increases, the deterioration rates of strength are gradually stable. The shear strength deterioration degree of aeolian sand increases hyperbolically with the number of freeze-thaw cycles and linearly with salt content. 3 tabs, 10 figs, 28 refs.

参考文献/References:

[1] 邴 慧,何 平.不同冻结方式下盐渍土水盐重分布规律的试验研究[J].岩土力学,2011,32(8):2307-2312.
BING Hui, HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. Rock and Soil Mechanics, 2011, 32(8): 2307-2312.(in Chinese)
[2] 肖泽岸,赖远明,尤哲敏.冻融循环作用下含盐量对Na2SO4土体变形特性影响的试验研究[J].岩土工程学报,2017,39(5):953-960.
XIAO Ze-an, LAI Yuan-ming, YOU Zhe-min. Experimental study on impact of salt content on deformation characteristics of sodium sulfate soil under freeze-thaw conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 953-960.(in Chinese)
[3] 杨晓华,刘 伟,张莎莎,等.温度变化对粗粒硫酸盐渍土路基变形影响分析[J].中国公路学报,2020,33(3):64-72.
YANG Xiao-hua, LIU Wei, ZHANG Sha-sha, et al. Influence of temperature change on deformation of coarse-grained sulfate saline soil subgrade[J]. China Journal of Highway and Transport, 2020, 33(3): 64-72.(in Chinese)
[4] 胡建荣,张 宏,张海龙,等.沙漠区风积沙路基水盐迁移规律[J].交通运输工程学报,2017,17(3):36-45.
HU Jian-rong, ZHANG Hong, ZHANG Hai-long, et al. Water-salt migration laws of aeolian sand subgrade in desert area[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 36-45.(in Chinese)
[5] 张 宏,闫晓辉,王中翰,等.压实风积沙土层盐分迁移规律研究[J].岩土工程学报,2019,41(4):741-747.
ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, et al. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741-747.(in Chinese)
[6] 张经双,段雪雷,马冬冬.氯盐和冻融耦合下水泥土的强度和破坏特征[J].冰川冻土,2020,42(2):515-522.
ZHANG Jing-shuang, DUAN Xue-lei, MA Dong-dong. Strength and failure characteristics of soil-cement under coupling of chloride salt and freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 515-522.(in Chinese)
[7] 杜海民,马 巍,张淑娟,等. 三轴循环加卸载条件下高含冰冻结砂土变形特性试验研究[J].岩土力学,2017,38(6):1675-1681.
DU Hai-min, MA Wei, ZHANG Shu-juan, et al. Experimental investigation on deformation characteristics of ice-rich frozen silty sands under triaxial loading-unloading cycle[J]. Rock and Soil Mechanics, 2017, 38(6): 1675-1681.(in Chinese)
[8] CUI Kai, WU Guo-peng, DU Yu-min, et al. The coupling effects of freeze-thaw cycles and salinization due to snowfall on the rammed earth used in historical freeze-thaw cycles relics in northwest China[J]. Cold Regions Science and Technology, 2019, 160: 288-299.
[9] HAN Yan, WANG Qing, WANG Ning, et al. Effect of freeze-thaw cycles on shear strength of saline soil[J]. Cold Regions Science and Technology, 2018, 154: 42-53.
[10] XU Jian, LI Yan-feng, WANG Song-he, et al. Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1523-1541.
[11] WANG Xu-sheng, LIAO Meng-ke, DU Li-qun. Experimental study on the influence of temperature on salt expansion of sodium sulfate saline soil[J]. Journal of Highway and Transportation Research and Development, 2017, 11(3): 1-7.
[12] 郑英杰,金 青,崔新壮,等.冻融循环作用下黄泛区饱和含盐粉土动力性能及细观损伤演化规律[J].中国公路学报,2020,33(9):32-44.
ZHENG Ying-jie, JIN Qing, CUI Xin-zhuang, et al. Dynamic behavior and meso-damage evolution of saturated saline silt from Yellow River flooded area under freeze-thaw cycle[J]. China Journal of Highway and Transport, 2020, 33(9): 32-44.(in Chinese)
[13] 谌文武,贾博博,蔡 韬,等.融雪与降雨入渗下含盐土遗址的冻融劣化研究[J].岩土工程学报,2022,44(2):334-342.
CHEN Wen-wu, JIA Bo-bo, CAI Tao, et al. Freeze-thaw deterioration of saline earthen sites under snowmelt or rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 334-342.(in Chinese)
[14] 叶万军,李长清,杨更社,等.冻融环境下黄土体结构损伤的尺度效应[J].岩土力学,2018,39(7):2336-2343,2360.
YE Wan-jun, LI Chang-qing, YANG Geng-she, et al. Scale effects of damage to loess structure under freezing and thawing conditions[J]. Rock and Soil Mechanics, 2018, 39(7): 2336-2343, 2360.(in Chinese)
[15] 许 健,张明辉,李彦锋,等.Na2SO4盐渍原状黄土冻融过程劣化特性试验研究[J].岩土工程学报,2020,42(9):1642-1650. XU Jian, ZHANG Ming-hui, LI Yan-feng, et al. Experimental study on deterioration behavior of saline undisturbed loess with sodium sulphate under freeze-thaw action[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1642-1650.(in Chinese)
[16] 董晓宏,张爱军,连江波,等.反复冻融下黄土抗剪强度劣化的试验研究[J].冰川冻土,2010,32(4):767-772.
DONG Xiao-hong, ZHANG Ai-jun, LIAN Jiang-bo, et al. Study of shear strength deterioration of loess under repeated freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 767-772.(in Chinese)
[17] 郑 方,邵生俊,王松鹤.复杂应力条件下冻融作用对黄土强度的影响[J].岩土工程学报,2021,43(增1):224-228.
ZHENG Fang, SHAO Sheng-jun, WANG Song-he. Influences of freeze-thaw on strength of loess under complex stress path[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 224-228.(in Chinese)
[18] 闫超萍,龙志林,周益春,等.钙质砂剪切特性的围压效应和粒径效应研究[J].岩土力学,2020,41(2):581-591,634.
YAN Chao-ping, LONG Zhi-lin, ZHOU Yi-chun, et al. Investigation on the effects of confining pressure and particle size of shear characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2020, 41(2): 581-591, 634.(in Chinese)
[19] HENRY H. Soil freeze thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biology and Biochemistry, 2007, 39(5): 977-986.
[20] RUIZ A V G, REY A R, CELORIO C, et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(7): 633-637.
[21] LEROUEIL S, TARDIF J, ROY M, et al. Effects of frost on the mechanical behaviour of Champlain Sea Clays[J].Canadian Geotechnical Journal, 1991, 28(5): 690-697.
[22] 包卫星,郭小龙,杨万精.干旱荒漠区天然砂砾路基填料压实特性分析[J].中国公路学报,2017,30(2):18-24.
BAO Wei-xing, GUO Xiao-long, YANG Wan-jing. Analysis on compaction characteristics of natural gravel for subgrade filling in arid desert region[J]. China Journal of Highway and Transport, 2017, 30(2): 18-24.(in Chinese)
[23] 牛亚强,赖远明,王 旭,等.冻结粉质黏土三轴抗压强度和变形特性试验研究[J].冰川冻土,2016,38(2):424-430.
NIU Ya-qiang, LAI Yuan-ming, WANG Xu, et al. Experimental study on triaxial compressive strength and deformation behaviors of frozen silty clay[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 424-430.(in Chinese)
[24] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653.
[25] LING X Z, ZHANG F, LI Q L, et al. Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze-thaw cycle under multi-stage cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 111-121.
[26] 赖远明,程红彬,高志华,等.冻结砂土的应力-应变关系及非线性莫尔强度准则[J].岩石力学与工程学报,2007,26(8):1612-1617.
LAI Yuan-ming, CHENG Hong-bin, GAO Zhi-hua, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612-1617.(in Chinese)
[27] 卜建清,王天亮.冻融及细粒含量对粗粒土力学性质影响的试验研究[J].岩土工程学报,2015,37(4):608-614.
BU Jian-qing, WANG Tian-liang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614.(in Chinese)
[28] 常 丹,刘建坤,李 旭.冻融循环下粉砂土应力-应变归一化特性研究[J].岩土力学,2015,36(12):3500-3505,3515.
CHANG Dan, LIU Jian-kun, LI Xu. Normalized stress-strain behavior of silty sand under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2015, 36(12): 3500-3505, 3515.(in Chinese)

相似文献/References:

[1]冯忠居,李维洲,王廷武,等.新疆板块状盐渍土工程特性[J].交通运输工程学报,2010,10(06):1.
 FENG Zhong-ju,LI Wei-zhou,WANG Ting-wu,et al.Engineering characteristics of plate-like saline soil in Xinjiang[J].Journal of Traffic and Transportation Engineering,2010,10(06):1.
[2]傅 珍,王选仓,李宏志,等.高速公路拓宽路基差异沉降[J].交通运输工程学报,2010,10(06):25.
 FU Zhen,WANG Xuan-cang,LI Hong-zhi,et al.Differentia settlement of widening subgrade for expressway[J].Journal of Traffic and Transportation Engineering,2010,10(06):25.
[3]雷胜友,李志远,王吉庆,等.含水量对非饱和黄土强度的影响(英文)[J].交通运输工程学报,2012,12(01):1.
 LEI Sheng-you,LI Zhi-yuan,WANG Ji-qing,et al.Effect of water content on strength of unsaturated loess[J].Journal of Traffic and Transportation Engineering,2012,12(06):1.
[4]徐世强,折学森,王思长.高速公路坡面滚石自由飞落分析模型[J].交通运输工程学报,2011,11(02):14.
 XU Shi-qiang,SHE Xue-sen,WANG Si-chang.Free rolling model of stone on expressway slope[J].Journal of Traffic and Transportation Engineering,2011,11(06):14.
[5]张志权,胡志平,赵 洁.冻融作用下二灰黄土强度特性[J].交通运输工程学报,2011,11(06):24.
 ZHANG Zhi-quan,HU Zhi-ping,ZHAO Jie.Strength properties of lime-fly ash loess under freezing-thawing cycles[J].Journal of Traffic and Transportation Engineering,2011,11(06):24.
[6]李跃军,吴亚中,李 亮.基于可靠度的路基均匀性评价标准[J].交通运输工程学报,2010,10(03):17.
 LI Yue-jun,WU Ya-zhong,LI Liang.Uniformity evaluation standard of subgrade based on reliability[J].Journal of Traffic and Transportation Engineering,2010,10(06):17.
[7]王思长,折学森,李 毅,等.基于尖点突变理论的岩质边坡稳定性分析[J].交通运输工程学报,2010,10(03):23.
 WANG Si-chang,SHE Xue-sen,LI Yi,et al.Stability analysis of rock slope based on cusp catastrophe theory[J].Journal of Traffic and Transportation Engineering,2010,10(06):23.
[8]屈战辉,谢永利,袁福发,等.土工格室柔性挡墙极限主动土压力计算方法[J].交通运输工程学报,2010,10(01):24.
 QU Zhan-hui,XIE Yong-li,YUAN Fu-fa,et al.Calculation method of active earth pressure under limit state for geocell flexible retaining wall[J].Journal of Traffic and Transportation Engineering,2010,10(06):24.
[9]徐世强,邹 群,折学森,等.公路黄土坝式路堤蓄水位分析[J].交通运输工程学报,2012,12(06):13.
 XU Shi-qiang,ZOU Qun,SHE Xue-sen,et al.Pool level analysis of highway loess dam embankment[J].Journal of Traffic and Transportation Engineering,2012,12(06):13.
[10]周志军,牛 涌,张铁柱.基于改进Sarma法的岩质边坡稳定性分析[J].交通运输工程学报,2013,13(01):15.
 ZHOU Zhi-jun,NIU Yong,ZHANG Tie-zhu.Stability analysis of rock slope based on improved Sarma method[J].Journal of Traffic and Transportation Engineering,2013,13(06):15.

备注/Memo

备注/Memo:
收稿日期:2023-06-27
基金项目:国家自然科学基金项目(51878064); 新疆维吾尔自治区重大科技专项项目(2020A03003-7); 陕西省自然科学基础研究计划项目(2021JM-180); 中央高校基本科研业务费专项资金项目(300102211302)
作者简介:包卫星(1979-),男,新疆乌鲁木齐人,长安大学教授,工学博士,从事特殊土路基工程性质、灾变机理与处治研究。
更新日期/Last Update: 2023-12-30