[1]赵祥模国家重点研发计划(0YFB000)团队.自动驾驶测试与评价技术研究进展[J].交通运输工程学报,2023,23(06):10-77.[doi:10.19818/j.cnki.1671-1637.2023.06.002]
 ZHAO Xiang-mo's team supported by the National Key Research and Development Program of China(0YFB000).Research progress in testing and evaluation technologies for autonomous driving[J].Journal of Traffic and Transportation Engineering,2023,23(06):10-77.[doi:10.19818/j.cnki.1671-1637.2023.06.002]
点击复制

自动驾驶测试与评价技术研究进展()
分享到:

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

卷:
第23卷
期数:
2023年06期
页码:
10-77
栏目:
综述
出版日期:
2023-12-30

文章信息/Info

Title:
Research progress in testing and evaluation technologies for autonomous driving
文章编号:
1671-1637(2023)06-0010-68
作者:
赵祥模国家重点研发计划(2021YFB2501200)团队
Author(s):
ZHAO Xiang-mo's team supported by the National Key Research and Development Program of China(2021YFB2501200)
关键词:
智能交通 自动驾驶 测试与评价技术 交通流仿真测试 硬件在环测试 场地测试 智能性评价 测试评价工具链 缺陷检测
Keywords:
intelligent transportation autonomous driving test and evaluation technology traffic flow simulation test hardware-in-the-loop test field test intelligence evaluation test evaluation tool chain defect detection
分类号:
U495
DOI:
10.19818/j.cnki.1671-1637.2023.06.002
文献标志码:
A
摘要:
针对实际复杂交通运行环境中自动驾驶车辆整车级测试成本高、周期长、覆盖度低、缺乏完善工具链等难题,分析了自动驾驶测试与评价技术7大领域的研究现状,展望了未来发展方向,具体涵盖了自动驾驶车辆仿真测试技术、交通流仿真测试技术、硬件在环测试技术、场地测试技术、智能性评价技术、测试评价工具链与体系构建、认证与潜在缺陷检测技术等。在自动驾驶车辆仿真测试方面,分析了自动驾驶仿真测试软件、车辆动力学模型、测试背景车交互行为模型、云控平台监管的仿真测试与车辆仿真系统标准化的研究现状,总结了自动驾驶车辆仿真测试目前存在的主要问题; 在自动驾驶交通流仿真测试方面,总结了测试背景车驾驶风格模型、交通流建模与仿真、交通场景生成方法和加速测试方法的研究现状,展望了自动驾驶交通流仿真测试的未来发展趋势; 在硬件在环测试技术方面,总结了人-车-路-环多维数字孪生测试和自动驾驶车辆整车级系统平台构建方法,概述了高清摄像头、毫米波雷达、超声波雷达等典型传感器数据与车车/车路通信信号的模拟技术; 在场地测试技术方面,综述了封闭场地测试、开放道路测试与高速公路测试相关测试场、测试标准和关键技术的发展现状; 在智能性评价技术方面,从自动驾驶智能性概念、场景复杂度量化和评估、自动驾驶智能性评价体系与社会合作性评价方法四方面介绍自动驾驶智能性评价方法的研究现状; 在测试评价工具链与体系构建方面,主要从测试评价工具链技术、自动驾驶测试评价体系、自动驾驶测试标准现状三方面介绍了自动驾驶测试评价标准体系现状; 在认证与潜在缺陷检测技术方面,从自动驾驶缺陷的定义、致因分析、缺陷分类、缺陷检测等方面综述了目前自动驾驶的缺陷检测方法,总结了自动驾驶车辆安全保障面临的挑战。研究结果表明:自动驾驶测试评价技术虽已取得较大进展,但测试评价标准体系仍不完善,现有测试工具与方法难以满足L3级及以上自动驾驶车辆测试需求; 虚拟仿真与数字孪生技术发展应用水平较低,在拟真度、测试效率与整车级测试能力方面存在诸多不足; 未来需进一步加强全场景、高保真建模技术与实时仿真软件研发,建立虚实交互的在线加速孪生测试系统,研究自动驾驶全栈危险测试场景生成和加速测试方法,整合自动驾驶测试技术和工具,形成自动驾驶测试评价的工具链,完善标准规范。
Abstract:
In view of the high cost, long cycle, low coverage, and lack of a perfect tool chain for autonomous driving vehicle tests in the actual complex traffic environment, the research status of seven major areas of testing and evaluation technologies for autonomous driving was analyzed, and the future development direction of testing and evaluation technologies for autonomous driving was predicted, including simulation and testing technology of autonomous driving vehicles, simulation and testing technology of traffic flow, hardware-in-the-loop testing technology, field testing technology, intelligence evaluation technology, testing and evaluation tool chain and its system's construction, certification and potential defect detection technology, etc. In terms of simulation and testing of autonomous driving vehicles, the research status of simulation and testing software for autonomous driving, vehicle dynamics models, background vehicle interaction behavior models for testing, simulation and testing of cloud control platform supervision, and standardization of vehicle simulation system was analyzed. The main problems currently existing in the simulation and testing of autonomous driving vehicles were summarized. In terms of simulation and testing of autonomous driving traffic flow, the research status of driving style models for test background vehicles, traffic flow modeling and simulation, traffic scenario generation methods, and acceleration testing methods was summarized, and the future development trend of simulation and testing of autonomous driving traffic flow was predicted. In terms of hardware-in-the-loop testing technology, the human-vehicle-road-loop multi-dimensional digital twin tests and construction methods of the system platform for autonomous driving vehicles were summarized. Typical sensor data from high-definition cameras, millimeter-wave radars, and ultrasonic radars, as well as simulation technology of vehicle-to-vehicle and vehicle-to-road communication signals, were reviewed. In terms of field testing technology, the development status of closed field testing, open road testing, and highway test-related testing fields, testing standards, and key technologies were summarized. In terms of intelligence evaluation technology, the research status of intelligence evaluation methods for autonomous driving was introduced from four aspects: the concept of autonomous driving intelligence, the quantification and evaluation of scene complexity, the intelligence evaluation systems of autonomous driving, and the social cooperation evaluation methods. In terms of testing and evaluation tool chain and system construction, the current situation of the testing and evaluation standard system for autonomous driving was introduced mainly from three aspects: the testing and evaluation tool chain technology, the autonomous driving testing evaluation system, and the current situation of autonomous driving testing standards. Finally, in terms of certification and potential defect detection technology, the current defect detection methods for autonomous driving were reviewed from the definition, cause, classification, and detection of autonomous driving defects. The challenges faced in the safety assurance of autonomous driving vehicles were summarized. Research results show that although the autonomous driving testing and evaluation technology has made great progress, the testing and evaluation standard system is still not perfect, and the existing testing tools and methods fail to meet the testing needs of autonomous driving vehicles at level three and above. The development and application level of virtual simulation and digital twin technology is low, and there are many deficiencies in the degree of simulation, testing efficiency, and vehicle testing ability. In the future, it is necessary to further strengthen the research and development of full-scene and high-fidelity modeling technology and real-time simulation software, establish an online accelerated twin testing system with virtual and real interaction, study the scenario generation and acceleration methods of autonomous driving full-stack hazardous testing, and integrate autonomous driving testing technologies and tools, so as to form a tool chain for autonomous driving testing and evaluation and improve standard specifications.20 tabs, 29 figs, 299 refs.

参考文献/References:

[1] GAO Feng, DUAN Jian-li, HAN Zai-dao, et al. Automatic virtual test technology for intelligent driving systems considering both coverage and efficiency[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14365-14376.
[2] 邓晓峰,王润民,徐志刚,等.我国智能网联汽车测试及示范基地发展现状[J].汽车工业研究,2019(1):6-13.
DENG Xiao-feng, WANG Run-min, XU Zhi-gang, et al. Development status of intelligent networked automobile testing and demonstration base in China[J]. Auto Industry Research, 2019(1): 6-13.(in Chinese)
[3] 孙 航,李志军,张琳琳,等.基于OEDR和ODC的自动驾驶汽车实际道路测试评价技术研究[J].汽车工程,2022,44(6):842-850.
SUN Hang, LI Zhi-jun, ZHANG Lin-lin, et al. Research on the test and evaluation technique of real roads for automated driving vehicles based on OEDR and ODC[J]. Automotive Engineering, 2022, 44(6): 842-850.(in Chinese)
[4] WANG Jun-min, STEIBER J, SURAMPUDI B. Autonomous ground vehicle control system for high-speed and safe operation[J]. International Journal of Vehicle Autonomous Systems, 2009, 7(1/2): 18-35.
[5] PING E P, HUDHA K, JAMALUDDIN H. Hardware-in-the-loop simulation of automatic steering control for lanekeeping manoeuvre: outer-loop and inner-loop control design[J]. International Journal of Vehicle Safety, 2010, 5(1): 35-59.
[6] ZAKARIA M A, ZAMZURI H, MAMAT R, et al. A path tracking algorithm using future prediction control with spike detection for an autonomous vehicle robot[J]. International Journal of Advanced Robotic Systems, 2013, DOI: 10.5772/56658.
[7] ELBANHAWI M, SIMIC M, JAZAR R. The role of path continuity in lateral vehicle control[J].Procedia Computer Science, 2015, 60: 1289-1298.
[8] RAFFO G V, GOMES G K, NORMEY-RICO J E, et al. A predictive controller for autonomous vehicle path tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1): 92-102.
[9] GUO Lie, GE Ping-shu, YANG Xiao-li, et al. Intelligent vehicle trajectory tracking based on neural networks sliding mode control[C]∥IEEE. Proceedings 2014 International Conference on Informative and Cybernetics for Computational Social Systems(ICCSS). New York: IEEE, 2014: 57-62.
[10] SCHIEHLEN W O. Computer generation of equations of
motion[C]∥Springer. Computer Aided Analysis and Optimization of Mechanical System Dynamics. Berlin: Springer, 1984: 183-215.
[11] SCHIEHLEN W O, KREUZER E J. Symbolic computerized derivation of equations of motion[C]∥Springer. Dynamics of Multibody Systems: Symposium Munich. Berlin: Springer, 1977: 290-305.
[12] ORLANDEA N, CALAHAN D A, CHACE M A. A sparsity-
oriented approach to the dynamic analysis and design of mechanical systems—part 2[J]. Journal of Engineering for Industry, 1977, 99(3): 780-784.
[13] CHACE M A. Methods and experience in computer aided
design of large-displacement mechanical systems[C]∥Springer. Computer Aided Analysis and Optimization of Mechanical System Dynamics. Berlin: Springer, 1984: 233-259.
[14] 王 敬,杨志刚,王 勇.汽车四轮转向四自由度动力学模型[J].山东交通学院学报,2008,16(1):11-15.
WANG Jing, YANG Zhi-gang, WANG Yong. A four-degree freedom dynamics model of automotive four-wheel-steering[J]. Journal of Shandong Jiaotong University, 2008, 16(1): 11-15.(in Chinese)
[15] LIU Z, PAYRE G, BOURASSA P. Nonlinear oscillations
and chaotic motions in a road vehicle system with driver steering control[J]. Nonlinear Dynamics, 1996, 9: 281-304.
[16] BLAJER W. An effective solver for absolute variable formulation of multibody dynamics[J]. Computational Mechanics, 1995, 15(5): 460-472.
[17] 王阳阳,靳晓雄,左曙光,等.基于R-W多体理论的整车动力学仿真平台研究[J].汽车工程,2008,30(1):22-25.
WANG Yang-yang, JIN Xiao-xiong, ZUO Shu-guang, et al. A research on vehicle dynamics simulation platform based on R-W method of multi-body dynamics[J]. Automotive Engineering, 2008, 30(1): 22-25.(in Chinese)
[18] JIN Ting, GONG Yun-qiu, WEI Chun-yu. Vehicle dynamics modeling based on vortex[J]. Applied Mechanics and Materials, 2014, 624: 289-292.
[19] 胡隽卿.两自由度铰接越野车辆行驶动力学特性研究[D].长春:吉林大学,2011.
HU Jun-qing. Study of the ride dynamics characteristics of the off-road vehicle with two degree of freedom articulated body[D]. Changchun: Jilin University, 2011.(in Chinese)
[20] 杨怀广.面向多运动工况的主动悬架火星车建模及仿真技术研究[D].哈尔滨:哈尔滨工业大学,2020.
YANG Huai-guang. Research on modeling and simulation of mars rovers with active suspension system for variable moving conditions[D]. Harbin: Harbin Institute of Technology, 2020.(in Chinese)
[21] WANG Jian-qiang, ZHANG Lei, ZHANG De-zhao, et al.
An adaptive longitudinal driving assistance system based on driver characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 1-12.
[22] ZHAO Xiao-cong, HE Ren, WANG Jian-qiang. How do drivers respond to driving risk during car-following? Risk-response driver model and its application in human-like longitudinal control[J]. Accident Analysis and Prevention, 2020, 148: 105783.
[23] WADA T, DOI S, TSURU N, et al. Characterization of expert drivers' last-second braking and its application to a collision avoidance system[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 413-422.
[24] PAPATHANASOPOULOU V, ANTONIOU C. Towards data-driven car-following models[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 496-509.
[25] YU Rong-jie, ZHANG Rui-ci, AI Hao-an, et al. Personalized driving assistance algorithms: case study of federated learning based forward collision warning[J]. Accident Analysis and Prevention, 2022, 168: 106609.
[26] KHODAYARI A, GHAFFARI A, KAZEMI R, et al. A modified car-following model based on a neural network model of the human driver effects[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2012, 42(6): 1440-1449.
[27] LEFÈVRE S, CARVALHO A, BORRELLI F. A learning-based framework for velocity control in autonomous driving[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 32-42.
[28] WANG Wen-shuo, ZHAO Ding, HAN Wei, et al. A learning-based approach for lane departure warning systems with a personalized driver model[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9145-9157.
[29] ALI Y, HUSSAIN F, BLIEMER M C J, et al. Predicting and explaining lane-changing behaviour using machine learning: a comparative study[J]. Transportation Research Part C: Emerging Technologies, 2022, 145: 103931.
[30] BUTAKOV V A, IOANNOU P. Personalized driver/vehicle lane change models for ADAS[J]. IEEE Transactions on Vehicular Technology, 2014, 64(10): 4422-4431.
[31] ZHANG Yi-fan, CHEN Xin-hong, WANG Jian-ping, et al. A generative car-following model conditioned on driving styles[J]. Transportation Research Part C: Emerging Technologies, 2022, 145: 103926.
[32] CHEN Zhi-gui, WANG Xue-song, GUO Qi-ming, et al. Towards human-like speed control in autonomous vehicles: a mountainous freeway case[J]. Accident Analysis and Prevention, 2022, 166: 106566.
[33] 黄 晶,蓟仲勋,彭晓燕,等.考虑驾驶人风格的换道轨迹规划与控制[J].中国公路学报,2019,32(6):226-239,247.
HUANG Jing, JI Zhong-xun, PENG Xiao-yan, et al. Driving style adaptive lane-changing trajectory planning and control[J]. China Journal of Highway and Transport, 2019, 32(6): 226-239, 247.(in Chinese)
[34] REN Guo-qing, ZHANG Yong, LIU Hao, et al. A new lane-changing model with consideration of driving style[J]. International Journal of Intelligent Transportation Systems Research, 2019, 17(3): 181-189.
[35] ZHANG Yi-fan, XU Qian, WANG Jian-ping, et al. A learning-based discretionary lane-change decision-making model with driving style awareness[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 68-78.
[36] DESJARDINS C, CHAIB-DRAA B. Cooperative adaptive cruise control: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1248-1260.
[37] ZHANG Yi, SUN Ping, YIN Yu-han, et al. Human-like
autonomous vehicle speed control by deep reinforcement learning with double Q-learning[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium(IV). New York: IEEE, 2018: 1251-1256.
[38] 朱 冰,蒋渊德,赵 健,等.基于深度强化学习的车辆跟驰控制[J].中国公路学报,2019,32(6):53-60.
ZHU Bing, JIANG Yuan-de, ZHAO Jian, et al. A car-following control algorithm based on deep reinforcement learning[J]. China Journal of Highway and Transport, 2019, 32(6): 53-60.(in Chinese)
[39] LI Guo-fan, YANG Liang, LI Shen, et al. Human-like decision making of artificial drivers in intelligent transportation systems: an end-to-end driving behavior prediction approach[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(6): 188-205.
[40] HAN Lei, WU Lei, LIANG Fu-jian, et al. A novel end-to-end model for steering behavior prediction of autonomous ego-vehicles using spatial and temporal attention mechanism[J]. Neurocomputing, 2022, 490: 295-311.
[41] 王鑫鹏,陈志军,吴超仲,等.考虑驾驶风格的智能车自主驾驶决策方法[J].交通信息与安全,2020,38(2):37-46.
WANG Xin-peng, CHEN Zhi-jun, WU Chao-zhong, et al. A method of automatic driving decision for smart car considering driving style[J]. Journal of Transport Information and Safety, 2020, 38(2): 37-46.(in Chinese)
[42] ZHU Mei-xin, WANG Xue-song, WANG Yin-hai. Human-like autonomous car-following model with deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 348-368.
[43] LI Dian-zhao, OKHRIN O. Modified DDPG car-following model with a real-world human driving experience with CARLA simulator[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103987.
[44] 焦新宇,杨殿阁,江 昆,等.基于端到端学习机制的高速公路行驶轨迹曲率预测[J].汽车工程,2018,40(12):1494-1499.
JIAO Xin-yu, YANG Dian-ge, JIANG Kun, et al. Driving trajectory curvature prediction of vehicle on highway based on end-to-end learning mechanism[J]. Automotive Engineering, 2018, 40(12): 1494-1499.(in Chinese)
[45] CHEN Long, HU Xue-min, TIAN Wei, et al. Parallel planning: a new motion planning framework for autonomous driving[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 236-246.
[46] ARADI S. Survey of deep reinforcement learning for motion planning of autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 740-759.
[47] KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4909-4926.
[48] WU Yuan-qing, LIAO Si-qin, LIU Xiang, et al. Deep reinforcement learning on autonomous driving policy with auxiliary critic network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3680-3690.
[49] GUO Hong-yu, KEYVAN-EKBATANI M, XIE Kun. Lane change detection and prediction using real-world connected vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2022, 142: 103785.
[50] LI Guo-fa, QIU Yi-fan, YANG Yi-fan, et al. Lane change strategies for autonomous vehicles: a deep reinforcement learning approach based on transformer[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2197-2211.
[51] CHEN Qi, TANG Si-hai, YANG Qing, et al. Cooper: cooperative perception for connected autonomous vehicles based on 3D point clouds[C]∥IEEE. 2019 IEEE 39th International Conference on Distributed Computing Systems(ICDCS). New York: IEEE, 2019: 514-524.
[52] WANG Chao-jie, GONG Si-yuan, ZHOU An-ye, et al. Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints[J]. Transportation Research Procedia, 2019, 38: 242-262.
[53] ARTHURS P, GILLAM L, KRAUSE P, et al. A taxonomy and survey of edge cloud computing for intelligent transportation systems and connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6206-6221.
[54] WANG Hao-xin, LIU Ting-ting, KIM B, et al. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles[J]. IEEE Communications Surveys and Tutorials, 2020, 22(4): 2349-2377.
[55] LIANG Si-yuan, WU Hao, ZHEN Li, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360.
[56] WHAIDUZZAMAN M, SOOKHAK M, GANI A, et al.
A survey on vehicular cloud computing[J]. Journal of Network and Computer Applications, 2014, 40: 325-344.
[57] HOU Yun-fei, SELIMAN S M S, WANG En-shu, et al. Cooperative and integrated vehicle and intersection control for energy efficiency(CIVIC-E2)[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2325-2337.
[58] KUMAR N, RAHMAN S S, DHAKAD N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4919-4928.
[59] YUAN Jing, ZHENG Yu, XIE Xing, et al. Driving with
knowledge from the physical world[C]∥ACM. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 316-324.
[60] XU Wen-chao, ZHOU Hai-bo, CHENG Nan, et al. Internet of vehicles in big data era[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 5(1): 19-35.
[61] KAIWARTYA O, ABDULLAH A H, CAO Yue, et al.
Internet of vehicles: motivation, layered architecture, network model, challenges, and future aspects[J]. IEEE Access, 2016, 4: 5356-5373.
[62] SASAKI K, SUZUKI N, MAKIDO S, et al. Vehicle control system coordinated between cloud and mobile edge computing[C]∥IEEE. 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan(SICE). New York: IEEE, 2016: 1122-1127.
[63] WAN Jia-fu, ZHANG Da-qiang, ZHAO Sheng-jie, et al. Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions[J]. IEEE Communications Magazine, 2014, 52(8): 106-113.
[64] 张 扬,彭国雄,杨晓光.日本ITS发展现状及趋势[J].中外公路,2003,23(3):8-10.
ZHANG Yang, PENG Guo-xiong, YANG Xiao-guang. Present situation and trend of ITS development in Japan[J]. Journal of China and Foreign Highway, 2003, 23(3): 8-10.(in Chinese)
[65] 袁 君.基于数据挖掘技术的驾驶行为评分模型设计[J].信息记录材料,2020,21(10):153-155.
YUAN Jun. Design of driving behavior scoring model based on data mining technology[J]. Information Recording Materials, 2020, 21(10): 153-155.(in Chinese)
[66] 张 正.基于车联网驾驶行为评分的安全驾驶卫士分析与设计[D].南京:南京邮电大学,2017.
ZHANG Zheng. The analysis and design of driving safety guards based on the score of driving behavior in vehicle networking[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017.(in Chinese)
[67] 朱 爽.车联网环境下基于 UBI 的车险费率厘定模式与方法研究[D].北京:北京交通大学,2015.
ZHU Shuang. Research on the automobile insurance ratemaking mode and method based on UBI in the internet of vehicle[D]. Beijing: Beijing Jiaotong University, 2015.(in Chinese)
[68] JIANG Xian-tao, YU F R, SONG Tian, et al. Intelligent resource allocation for video analytics in blockchain-enabled internet of autonomous vehicles with edge computing[J]. IEEE Internet of Things Journal, 2022, 9(16): 14260-14272.
[69] ZHU Feng-hua, LYU Yi-sheng, CHEN Yuan-yuan, et al.
Parallel transportation systems: toward IoT-enabled smart urban traffic control and management[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4063-4071.
[70] WANG Zi-ran, LIAO Xi-shun, ZHAO Xuan-peng, et al.
A digital twin paradigm: vehicle-to-cloud based advanced driver assistance systems[C]∥IEEE. 2020 IEEE 91st Vehicular Technology Conference(VTC2020-Spring). New York: IEEE, 2020: 1-6.
[71] ASAM. Project types: learn which project types are available at ASAM[EB/OL].(2023-03-21)[2023-04-01]. https:∥www.asam.net/active-projects/project-types.
[72] ASAM. Development process: learn how ASAM standards are
developed[EB/OL].(2023-03-21)[2023-04-01]. https:∥www.asam.net/active-projects/development-process.
[73] 周博林,张宗实,陈 蔯.ASAM OpenX与基于场景的自动驾驶仿真测试[J].标准科学,2021(增1):110-122.
ZHOU Bo-lin, ZHANG Zong-shi, CHEN Chen. ASAM OpenX and scenario based simulation test for autonomous driving[J]. Standard Science, 2021(S1): 110-122.(in Chinese)
[74] C-ASAM. ASAM标准项目类型[EB/OL].(2022-03-29)[2022-11-03]. http:∥www.c-asam.net/?s=news-show-id-2.html.
C-ASAM. The type of ASAM standard project [EB/OL].(2022-03-29)[2022-11-03]. http:∥www.c-asam.net/?s=news-show-id-2.html.(in Chinese)
[75] LU Guang-quan, CHENG Bo, WANG Yun-peng, et al. A car-following model based on quantified homeostatic risk perception[J]. Mathematical Problems in Engineering, 2013, 2013: 408756.
[76] YANG H H, PENG H. Development of an errorable car-following driver model[J]. Vehicle System Dynamics, 2010, 48(6): 751-773.
[77] LINDORFER M, MECKLENBRÄUKER C F, OSTERMAYER G. Modeling the imperfect driver: incorporating human factors in a microscopic traffic model[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2856-2870.
[78] CAI Jun-yu, JIANG Hao-bin, WANG Jun-yan. Implementation of the human-like lane changing driver model based on Bi-LSTM[J]. Discrete Dynamics in Nature and Society, 2022, 2022: 9934292.
[79] JULKA S, SOWRIRAJAN V, SCHLOETTERER J, et al. Conditional generative adversarial networks for speed control in trajectory simulation[C]∥Springer. 7th International Conference on Machine Learning, Optimization, and Data Science. Berlin: Springer, 2021: 436-450.
[80] LIU Jian-bang, MAO Xin-yu, FANG Yu-qi, et al. A survey on deep-learning approaches for vehicle trajectory prediction in autonomous driving[C]∥IEEE. 2021 IEEE International Conference on Robotics and Biomimetics(ROBIO). New York: IEEE, 2021: 978-985.
[81] LIANG Ming, YANG Bin, HU Rui, et al. Learning lane graph representations for motion forecasting[C]∥Springer. 16th European Conference on Computer Vision. Berlin: Springer, 2020: 541-556.
[82] VARADARAJAN B, HEFNY A, SRIVASTAVA A, et al. Multipath++: efficient information fusion and trajectory aggregation for behavior prediction[C]∥ICRA. 2022 International Conference on Robotics and Automation(ICRA). New York: ICRA, 2022: 7814-7821.
[83] ALBABA B M, YILDIZ Y. Driver modeling through deep reinforcement learning and behavioral game theory[J]. IEEE Transactions on Control Systems Technology, 2022, 30(2): 885-892.
[84] SUN Ruo-yu, HU Shao-chi, ZHAO Hui-jing, et al. Human-like highway trajectory modeling based on inverse reinforcement learning[C]∥IEEE. 2019 IEEE Intelligent Transportation Systems Conference(ITSC). New York: IEEE, 2019: 1482-1489.
[85] HUANG Zhi-yu, WU Jing-da, LYU Chen. Driving behavior modeling using naturalistic human driving data with inverse reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10239-10251.
[86] SUN Jian, ZHANG He, ZHOU Hua-jun, et al. Scenario-based test automation for highly automated vehicles: a review and paving the way for systematic safety assurance[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14088-14103.
[87] ALTHOFF M, KOSCHI M, MANZINGER S. Common road: composable benchmarks for motion planning on roads[C]∥IEEE. 2017 IEEE Intelligent Vehicles Symposium(IV). New York: IEEE, 2017: 719-726.
[88] SHAH S, DEY D, LOVETT C, et al. Airsim: high-fidelity visual and physical simulation for autonomous vehicles[C]∥Springer. Field and Service Robotics: Results of the 11th International Conference. Berlin: Springer, 2018: 621-635.
[89] CARLA. Carla simulator[EB/OL].(2022-09-12)[2022-11-03]. https:∥carla.readthedocs.io/en/latest.
[90] FAN Hao-yang, ZHU Fan, LIU Chang-chun, et al. Baidu apollo em motion planner[J]. arXiv, 2018, DOI: 1807.08048.
[91] BENEKOHAL R F, TREITERER J. CARSIM. Car-following model for simulation of traffic in normal and stop-and-go conditions[J]. Transportation Research Record, 1988, 1194: 99-111.
[92] Siemens. Simcenter prescan software[EB/OL].(2022-09-21)[2022-11-03]. https:∥plm.sw.siemens.com/en-US/simcenter/autonomous-vehicle-solutions/prescan/.
[93] QI Xiao, NI Ying, XU Yi-ming, et al. Autonomous vehicles' car-following drivability evaluation based on driving behavior spectrum reference model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(7): 129-141.
[94] SONG Zhi-jin, WANG Hui-zi, SUN Jian, et al. Experimental findings with VISSIM and TransModeler for evaluating environmental and safety impacts using micro-simulations[J].Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(8): 566-580.
[95] MA Zi-an, SUN Jian, WANG Yun-peng. A two-dimensional simulation model for modelling turning vehicles at mixed-flow intersections[J]. Transportation Research Part C: Emerging Technologies, 2017, 75: 103-119.
[96] MA Zi-an, XIE Jian-bo, QI Xiao, et al. Two-dimensional
simulation of turning behavior in potential conflict area of mixed-flow intersections[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 412-428.
[97] XU Yi-ming, MA Zi-an, SUN Jian. Simulation of turning vehicles' behaviors at mixed-flow intersections based on potential field theory[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 498-518.
[98] SUN Jian, LIU Han, MA Zi-an. Modelling and simulation of highly mixed traffic flow on two-lane two-way urban streets[J]. Simulation Modelling Practice and Theory, 2019, 95: 16-35.
[99] BERGAMINI L, YE Ya-wei, SCHEEL O, et al. SimNet: learning reactive self-driving simulations from real-world observations[C]∥IEEE. 2021 IEEE International Conference on Robotics and Automation(ICRA). New York: IEEE, 2021: 5119-5125.
[100] YAN Xin-tao, ZOU Zheng-xia, FENG Shuo, et al. Learning naturalistic driving environment with statistical realism[J]. Nature Communications, 2023, 14: 2037.
[101] ZHAO Ding, HUANG Xia-nan, PENG Hu-ei, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733-744.
[102] FENG Shuo, FENG Yi-heng, YU Chun-hui, et al. Testing scenario library generation for connected and automated vehicles, part I: methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1573-1582.
[103] SUN Jian, ZHOU Hua-jun, XI Hao-chen, et al. Adaptive design of experiments for safety evaluation of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14497-14508.
[104] DING Wen-hao, CHEN Bai-ming, LI Bo, et al. Multimodal safety-critical scenarios generation for decision-making algorithms evaluation[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1551-1558.
[105] 邓伟文,李江坤,任秉韬,等.面向自动驾驶的仿真场景自动生成方法综述[J].中国公路学报,2022,35(1):316-333.
DENG Wei-wen, LI Jiang-kun, REN Bing-tao, et al. A survey on automatic simulation scenario generation methods for autonomous driving[J]. China Journal of Highway and Transport, 2022, 35(1): 316-333.(in Chinese)
[106] 陈吉清,舒孝雄,兰凤崇,等.典型危险事故特征的自动驾驶测试场景构建[J].华南理工大学学报(自然科学版),2021,49(5):1-8.
CHEN Ji-qing, SHU Xiao-xiong, LAN Feng-chong, et al. Construction of autonomous vehicles test scenarios with typical dangerous accident characteristics[J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(5): 1-8.(in Chinese)
[107] 王润民,朱 宇,赵祥模,等.自动驾驶测试场景研究进展[J].交通运输工程学报,2021,21(2):21-37.
WANG Run-min, ZHU Yu, ZHAO Xiang-mo, et al. Research progress on test scenario of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 21-37.(in Chinese)
[108] 朱 冰,张培兴,赵 健.面向多维度逻辑场景的自动驾驶安全性聚类评价方法[J].汽车工程,2020,42(11):1458-1463,1505.
ZHU Bing, ZHANG Pei-xing, ZHAO Jian. Clustering evaluation method of autonomous driving safety for multi-dimensional logical scenario[J]. Automotive Engineering, 2020, 42(11): 1458-1463, 1505.(in Chinese)
[109] MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]∥IEEE. 2018 IEEE Intelligent Vehicles Symposium(IV). New York: IEEE, 2018: 1821-1827.
[110] DING Wen-hao, LI Bo, EUN K J, et al. Semantically controllable scene generation with guidance of explicit knowledge[J]. arXiv, 2021,DOI: 2106.04066.
[111] JESENSKI S, STELLET J E, SCHIEGG F, et al. Generation of scenes in intersections for the validation of highly automated driving functions[C]∥IEEE. 2019 IEEE Intelligent Vehicles Symposium(IV). New York: IEEE, 2019: 502-509.
[112] 周文帅,朱 宇,赵祥模,等.面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J].汽车技术,2021(1):11-18.
ZHOU Wen-shuai, ZHU Yu, ZHAO Xiang-mo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18.(in Chinese)
[113] 朱 宇,赵祥模,徐志刚,等.基于蒙特卡洛模拟的无人车高速公路变道虚拟测试场景自动生成算法[J].中国公路学报,2022,35(3):89-100.
ZHU Yu, ZHAO Xiang-mo, XU Zhi-gang, et al. Automatic generation algorithm of lane-change virtual test scenario on highways for automated vehicles using Monte Carlo simulation[J]. China Journal of Highway and Transport, 2022, 35(3): 89-100.(in Chinese)
[114] DING Wen-hao, CHEN Bai-ming, XU Min-jun, et al. Learning to collide: an adaptive safety-critical scenarios generating method[C]∥IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). New York: IEEE, 2020: 2243-2250.
[115] CHOI S, KIM J, YEO H. TrajGAIL: generating urban vehicle trajectories using generative adversarial imitation learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103091.
[116] 赵祥模,赵玉钰,景首才,等.面向自动驾驶测试的危险变道场景泛化生成[J].自动化学报,2023,49(10):2211-2223.
ZHAO Xiang-mo, ZHAO Yu-yu, JING Shou-cai, et al. Generalization generation of hazardous lane-changing scenarios for automated vehicle testing[J]. Acta Automatica Sinica, 2023, 49(10): 2211-2223.(in Chinese)
[117] 余荣杰,田 野,孙 剑.高等级自动驾驶汽车虚拟测试:研究进展与前沿[J].中国公路学报,2020,33(11):125-138.
YU Rong-jie, TIAN Ye, SUN Jian. Highly automated vehicle virtual testing: a review of recent developments and research frontiers[J]. China Journal of Highway and Transport, 2020, 33(11): 125-138.(in Chinese)
[118] 朱 冰,范天昕,赵 健,等.基于危险边界搜索的自动驾驶系统加速测试方法[J].吉林大学学报(工学版),2023,53(3):704-712.
ZHU Bing, FAN Tian-xin, ZHAO Jian, et al. Accelerate test method of automated driving system based on hazardous boundary search[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 704-712.(in Chinese)
[119] SAEED A, AB HAMID S H, MUSTAFA M B. The experimental applications of search-based techniques for model-based testing: taxonomy and systematic literature review[J]. Applied Soft Computing, 2016, 49: 1094-1117.
[120] MULLINS G E, STANKIEWICZ P G, HAWTHORNE R C, et al. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles[J]. Journal of Systems and Software, 2018, 137: 197-215.
[121] XU Yi-ming, Zou Ya-jie, SUN Jian. Accelerated testing for automated vehicles safety evaluation in cut-in scenarios based on importance sampling, genetic algorithm and simulation applications[J]. Journal of Intelligent and Connected Vehicles, 2018, 1(1): 28-38.
[122] ZHAO Ding, LAM H, PENG Hu-ei, et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 595-607.
[123] HUANG Zhi-yuan, LAM H, LEBLANC D J, et al. Accelerated evaluation of automated vehicles using piecewise mixture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2845-2855.
[124] HUANG Zhi-yuan, LAM H, ZHAO Ding. An accelerated testing approach for automated vehicles with background traffic described by joint distributions[C]∥IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC). New York: IEEE, 2017: 933-938.
[125] ZHANG He, SUN Jian, TIAN Ye. Accelerated testing for highly automated vehicles: a combined method based on importance sampling and normalizing flows[C]∥IEEE. 2022 IEEE 25th International Conference on Intelligent Transportation Systems(ITSC). New York: IEEE, 2022: 574-579.
[126] WANG Xin-peng, PENG Hu-ei, ZHANG Song-an, et al. An interaction-aware evaluation method for highly automated vehicles[C]∥IEEE. 2021 IEEE International Intelligent Transportation Systems Conference(ITSC). New York: IEEE, 2021: 394-401.
[127] TUNCALI C E, FAINEKOS G. Rapidly-exploring random trees for testing automated vehicles[C]∥IEEE. 2019 IEEE Intelligent Transportation Systems Conference(ITSC). NewYork: IEEE, 2019: 661-666.
[128] KIM Y, TAY S, GUANETTI J, et al. Hardware-in-the-loop for connected automated vehicles testing in real traffic[J]. arXiv, 2019, DOI: 1907.09052.
[129] FENG Shuo, YAN Xin-tao, SUN Hao-wei, et al. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment[J]. Nature Communications, 2021, 12: 748.
[130] ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]∥IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC). New York: IEEE, 2017: 476-483.
[131] AMERSBACH C, WINNER H. Defining required and feasible test coverage for scenario-based validation of highly automated vehicles[C]∥IEEE. 2019 IEEE Intelligent Transportation Systems Conference(ITSC). New York: IEEE, 2019: 425-430.
[132] SHAFTO M, CONROY M, DOYLE R, et al. Modeling, simulation, information technology and processing roadmap[J]. National Aeronautics and Space Administration, 2010, 11: 1-32.
[133] 刘大同,郭 凯,王本宽,等.数字孪生技术综述与展望[J].仪器仪表学报,2018,39(11):1-10.
LIU Da-tong, GUO Kai, WANG Ben-kuan, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10.(in Chinese)
[134] QI Qing-lin, TAO Fei. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593.
[135] LIAO Xi-shun, WANG Zi-ran, ZHAO Xuan-peng, et al. Cooperative ramp merging design and field implementation: a digital twin approach based on vehicle-to-cloud communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4490-4500.
[136] SCHROEDER G, STEINMETZ C, PEREIRA C E, et al. Visualising the digital twin using web services and augmented reality[C]∥IEEE. 2016 IEEE 14th International Conference on Industrial Informatics(INDIN). New York: IEEE, 2016: 522-527.
[137] WANG Zi-ran, WU Guo-yuan, BORIBOONSOMSIN K, et al. Cooperative ramp merging system: agent-based modeling and simulation using game engine[J]. SAE International Journal of Connected and Automated Vehicles, 2019, 2(2): 115-128.
[138] CHEN Qi, WANG Xu-gang, YANG Jing, et al. Trajectory-following guidance based on a virtual target and an angle constraint[J]. Aerospace Science and Technology, 2019, 87: 448-458.
[139] YANG Chun-ying, DONG Jiang-hong, XU Qing, et al. Multi-vehicle experiment platform: a digital twin realization method[C]∥IEEE. 2022 IEEE/SICE International Symposium on System Integration(SII). New York: IEEE, 2022: 705-711.
[140] NIAZ A, SHOUKAT M U, JIA Yan-bing, et al. Autonomous driving test method based on digital twin: a survey[C]∥IEEE. 2021 International Conference on Computing, Electronic and Electrical Engineering(ICE Cube). New York: IEEE, 2021: 1-7.
[141] HETZER D, MUEHLEISEN M, KOUSARIDAS A, et al. 5G connected and automated driving: use cases and technologies in cross-border environments[C]∥IEEE. 2019 European Conference on Networks and Communications(EuCNC). New York: IEEE, 2019: 78-82.
[142] ZHAO Ding, PENG Hu-ei. From the lab to the street:
Solving the challenge of accelerating automated vehicle testing[J]. arXiv, 2017, DOI: 1707.04792.
[143] HUANG Wu-ling, WANG Kun-feng, LYU Yi-sheng, et al. Autonomous vehicles testing methods review[C]∥IEEE. 2016 IEEE 19th International Conference on Intelligent Transportation Systems(ITSC). New York: IEEE, 2016: 163-168.
[144] GE Yu-ming, WANG Yang, YU Run-dong, et al. Demo: research on test method of autonomous driving based on digital twin[C]∥IEEE. 2019 IEEE Vehicular Networking Conference(VNC). New York: IEEE, 2019: 1-2.
[145] SZALAY Z, FICZERE D, TIHANYI V, et al. 5G-enabled autonomous driving demonstration with a V2X scenario-in-the-loop approach[J]. Sensors(Basel), 2020, 20(24): 7344.
[146] LI Li, WANG Xiao, WANG Kun-feng, et al. P

相似文献/References:

[1]杨临涧,赵祥模,贺冰花,等.随机用户均衡交通分配问题的蚁群优化算法[J].交通运输工程学报,2018,18(03):189.
 YANG Lin-jian,ZHAO Xiang-mo,HE Bing-hua,et al.An ant colony optimization algorithm of stochastic user equilibrium traffic assignment problem[J].Journal of Traffic and Transportation Engineering,2018,18(06):189.
[2]吴超仲,吴浩然,吕能超.人机共驾智能汽车的控制权切换与安全性综述[J].交通运输工程学报,2018,18(06):131.
 WU Chao-zhong,WU Hao-ran,LYU Neng-chao.Review of control switch and safety of human-computerdriving intelligent vehicle[J].Journal of Traffic and Transportation Engineering,2018,18(06):131.
[3]陈小波,陈 程,陈 蕾,等.基于改进低秩矩阵补全的交通量数据缺失值插补方法[J].交通运输工程学报,2019,19(05):180.
 CHEN Xiao-bo,CHEN Cheng,CHEN Lei,et al.Interpolation method of traffic volume missing data based on improved low-rank matrix completion[J].Journal of Traffic and Transportation Engineering,2019,19(06):180.
[4]秦严严,张 健,陈凌志,等.手动-自动驾驶混合交通流元胞传输模型[J].交通运输工程学报,2020,20(02):229.[doi:10.19818/j.cnki.1671-1637.2020.02.019]
 QIN Yan-yan,ZHANG Jian,CHEN Ling-zhi,et al.Cell transmission model of mixed traffic flow of manual-automated driving[J].Journal of Traffic and Transportation Engineering,2020,20(06):229.[doi:10.19818/j.cnki.1671-1637.2020.02.019]
[5]陈 君,田朝军,赵清梅,等.基于时空行为规律挖掘的公交乘客分类方法[J].交通运输工程学报,2021,21(05):274.[doi:10.19818/j.cnki.1671-1637.2021.05.023]
 CEHN Jun,TIAN Chao-jun,ZHAO Qing-mei,et al.Bus passenger classification method based on spatial and temporal behavior regularity mining[J].Journal of Traffic and Transportation Engineering,2021,21(06):274.[doi:10.19818/j.cnki.1671-1637.2021.05.023]
[6]张 毅,裴华鑫,姚丹亚.车路协同环境下车辆群体协同决策研究综述[J].交通运输工程学报,2022,22(03):1.[doi:10.19818/j.cnki.1671-1637.2022.03.001]
 ZHANG Yi,PEI Hua-xin,YAO Dan-ya.Research review on cooperative decision-making for vehicle swarms in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(06):1.[doi:10.19818/j.cnki.1671-1637.2022.03.001]
[7]上官伟,李 鑫,柴琳果,等.车路协同环境下混合交通群体智能仿真与测试研究综述[J].交通运输工程学报,2022,22(03):19.[doi:10.19818/j.cnki.1671-1637.2022.03.002]
 SHANGGUAN Wei,LI Xin,CHAI Lin-guo,et al.Research review on simulation and test of mixed traffic swarm in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(06):19.[doi:10.19818/j.cnki.1671-1637.2022.03.002]
[8]上官伟,庞晓宇,李秋艳,等.车路协同环境下群体车辆诱导与协同运行方法[J].交通运输工程学报,2022,22(03):68.[doi:10.19818/j.cnki.1671-1637.2022.03.005]
 SHANGGUAN Wei,PANG Xiao-yu,LI Qiu-yan,et al.Guidance and cooperative operation method for group vehicles in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(06):68.[doi:10.19818/j.cnki.1671-1637.2022.03.005]
[9]曲 栩,甘 锐,安博成,等.基于广义时空图卷积网络的交通群体运动态势预测[J].交通运输工程学报,2022,22(03):79.[doi:10.19818/j.cnki.1671-1637.2022.03.006]
 QU Xu,GAN Rui,AN Bo-cheng,et al.Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J].Journal of Traffic and Transportation Engineering,2022,22(06):79.[doi:10.19818/j.cnki.1671-1637.2022.03.006]
[10]李 立,平振东,朱进玉,等.面向群体行驶场景的时空信息融合车辆轨迹预测[J].交通运输工程学报,2022,22(03):104.[doi:10.19818/j.cnki.1671-1637.2022.03.008]
 LI Li,PING Zhen-dong,ZHU Jin-yu,et al.Vehicle trajectory prediction based on spatio-temporal information fusion in crowded driving scenario[J].Journal of Traffic and Transportation Engineering,2022,22(06):104.[doi:10.19818/j.cnki.1671-1637.2022.03.008]
[11]唐 立,卿三东,徐志刚,等.自动驾驶公众接受度研究综述[J].交通运输工程学报,2020,20(02):131.[doi:10.19818/j.cnki.1671-1637.2020.02.011]
 TANG Li,QING San-dong,XU Zhi-gang,et al.Research review on public acceptance of autonomous driving[J].Journal of Traffic and Transportation Engineering,2020,20(06):131.[doi:10.19818/j.cnki.1671-1637.2020.02.011]
[12]李瑞敏,戴晶辰.自动驾驶影响下的出行行为研究综述[J].交通运输工程学报,2022,22(03):41.[doi:10.19818/j.cnki.1671-1637.2022.03.003]
 LI Rui-min,DAI Jing-chen.Review on impact of autonomous driving on travel behaviors[J].Journal of Traffic and Transportation Engineering,2022,22(06):41.[doi:10.19818/j.cnki.1671-1637.2022.03.003]

备注/Memo

备注/Memo:
收稿日期:2023-06-19
基金项目:国家重点研发计划(2021YFB2501200)
作者简介:赵祥模(1966-),男,重庆人,长安大学教授,工学博士,从事智慧交通与智能网联汽车测试技术研究。
更新日期/Last Update: 2023-12-30