[1]由林麟,贺俊姝,陈坤旭,等.面向个体出行推荐的联邦异质性模型和算法[J].交通运输工程学报,2023,23(05):253-263.[doi:10.19818/j.cnki.1671-1637.2023.05.018]
 YOU Lin-lin,HE Jun-shu,CHEN Kun-xu,et al.Federated heterogeneous model and algorithm for personal travel recommendation[J].Journal of Traffic and Transportation Engineering,2023,23(05):253-263.[doi:10.19818/j.cnki.1671-1637.2023.05.018]
点击复制

面向个体出行推荐的联邦异质性模型和算法()
分享到:

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

卷:
第23卷
期数:
2023年05期
页码:
253-263
栏目:
交通信息工程及控制
出版日期:
2023-11-10

文章信息/Info

Title:
Federated heterogeneous model and algorithm for personal travel recommendation
文章编号:
1671-1637(2023)05-0253-11
作者:
由林麟1贺俊姝1陈坤旭1何家琪1袁绍欣2赵娟娟3蔡 铭1
(1.中山大学 智能工程学院,广东 深圳 518107; 2.长安大学 信息工程学院,陕西 西安 710064; 3.首都师范大学 资源环境与旅游学院,北京 100048)
Author(s):
YOU Lin-lin1 HE Jun-shu1 CHEN Kun-xu1 HE Jia-qi1 YUAN Shao-xin2 ZHAO Juan-juan3 CAI Ming1
(1. School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China; 2. School of Information Engineering, Chang'an University, Xi'an 710064, Shaanxi, China; 3. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China)
关键词:
智能交通 出行推荐 联邦学习 混合罗吉特模型 隐私保护 个性化
Keywords:
intelligent transportation travel recommendation federated learning mixed logit model privacy protection personalization
分类号:
U491.1
DOI:
10.19818/j.cnki.1671-1637.2023.05.018
文献标志码:
A
摘要:
为实现兼顾偏好异质性与数据隐私化的个体出行推荐,基于模型参数化聚合与分布式训练的联邦学习计算范式,提出了一种联邦混合罗吉特(FMXL)模型,可解构标准MXL模型,以实现本地个体偏好与全局群体差异参数估算的分离; 为了消除模型对原始数据的依赖,提出了标准与聚合2种联邦吉布斯抽样算法,通过本地与全局参数的交互,实现模型的层次化联合估计; 为了验证所提模型与算法,基于Swiss Metro公开数据集,分别搭建了离线与在线2种出行推荐场景。分析结果表明:针对离线场景,2种联邦吉布斯抽样算法拟合的FMXL模型与标准多项式罗吉特模型相比,其对数似然值分别增大了157.8和153.2,预测率分别提升了12.3%和12.1%; 与基于集中式吉布斯抽样算法拟合的MXL模型相比,其计算时间分别缩短了64.2%和76.9%,通信时间均缩短了86.2%; 针对在线场景,FMXL模型的对数似然值和预测率均呈上升趋势,且整个估计过程的计算和通信时间均低于标准MXL模型。可见,以数据隐私化处理为前提,MXL模型的联邦化训练既能保证出行推荐的精准性,也能充分调动用户端闲置算力,有效提升出行推荐的时效性,体现了所提模型和算法的高适应和可拓展能力,同时基于联邦异质性模型的个体出行推荐还能有效推进交通系统的智能化进程。
Abstract:
To achieve personal travel recommendations by considering both the preference heterogeneity and data privacy, based on the model parametric aggregation and distributed training supported by the federated learning(FL)computing paradigm, a federated mixed Logit(FMXL)model was proposed by decoupling the standard mixed Logit model to separate the parameter estimation of local individual preferences and global population differences. In order to eliminate the dependence of the model on the original data, two federated Gibbs sampling algorithms, to be standardized or aggregated, were designed, to achieve the hierarchical estimation of the model through the interaction of local and global parameters. The proposed model and algorithm were validated for offline and online travel recommendation scenarios based on Swiss Metro data. Analysis results show that for offline scenario, the FMXL model based on two federated Gibbs sampling algorithms increase the log-likelihood value by 157.8 and 153.2, and the prediction rate by 12.3% and 12.1%, respectively, compared with the standard multinomial Logit model. In addition, the computation time reduce by 64.2% and 76.9%, respectively, and the communication times both reduce by 86.2% compared with the mixedLogit model based on the centralized Gibbs sampling algorithm. For the online scenario, both the log-likelihood value and the prediction rate of the FMXL model show an increasing trend, and the computation and communication times of the whole estimation process are lower than those of the standard mixed Logit model. Overall, with the data privacy as the precondition, the federated training of the MXL model ensures the accuracy of travel recommendations and effectively enhances the timeliness of travel recommendations by fully utilizing the idle computing power on the user side, reflecting the high adaptability and scalability of the proposed model and algorithms. In addition, the intelligent progress of the transportation system can be promoted effectively by personal travel recommendations based on the FMXL model. 3 tabs, 4 figs, 30 refs.

参考文献/References:

[1] 彭宏勤,张国伍.未来城市交通及其对未来城市发展影响[J].交通运输系统工程与信息,2020,20(1):2-5.
PENG Hong-qin, ZHANG Guo-wu. Future urban traffic and its influence on cities development[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 2-5.(in Chinese)
[2] LIU Yang, LYU Cheng, LIU Zhi-yuan, et al. Exploring a large-scale multi-modal transportation recommendation system[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103070.
[3] DAS D, SAHOO L, DATTA S. A survey on recommendation system[J]. International Journal of Computer Applications, 2017, 160(7): 6-10.
[4] ZHANG Qian, LU Jie, JIN Yao-chu. Artificial intelligence in recommender systems[J]. Complex and Intelligent Systems, 2021, 7(1): 439-457.
[5] CUI Ge, LUO Jun, WANG Xin. Personalized travel route recommendation using collaborative filtering based on GPS trajectories[J]. International Journal of Digital Earth, 2018, 11(3): 284-307.
[6] WEN Y T, YEO J Y, PENG W C, et al. Efficient keyword-aware representative travel route recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1639-1652.
[7] 孙全明,常 磊,马 铖,等.基于图嵌入和CaGBDT的多模态出行推荐[J].北京邮电大学学报,2021,44(5):81-87,106.
SUN Quan-ming, CHANG Lei, MA Cheng, et al. Multi-modal transportation recommendation based on graph embedding and CaGBDT[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 81-87, 106.(in Chinese)
[8] 杨 敏,李宏伟,任怡凤,等.基于旅客异质性画像的公铁联程出行方案推荐方法[J].清华大学学报(自然科学版),2022,62(7):1220-1227.
YANG Min, LI Hong-wei, REN Yi-feng, et al. Road-rail intermodal travel recommendations based on a passenger heterogeneity profile[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1220-1227.(in Chinese)
[9] SONG Xiang, DANAF M, ATASOY B, et al. Personalized menu optimization with preference updater: a Boston case study[J]. Transportation Research Record, 2018, 2672(8): 599-607.
[10] BALBONTIN C, HENSHER D A, COLLINS A T. How to better represent preferences in choice models: the contributions to preference heterogeneity attributable to the presence of process heterogeneity[J]. Transportation Research Part B: Methodological, 2019, 122: 218-248.
[11] GODDARD M. The EU general data protection regulation(GDPR): European regulation that has a global impact[J]. International Journal of Market Research, 2017, 59(6): 703-705.
[12] YANG Qiang, LIU Yang, CHEN Tian-jian, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
[13] JIAN Wei-tao, CHEN Kun-xu, HE Jun-shu, et al. A federated personal mobility service in autonomous transportation systems[J]. Mathematics, 2023, 11(12): 2693.
[14] LIU Sheng, CHEN Qi-yang, YOU Lin-lin. Fed2A: federated learning mechanism in asynchronous and adaptive modes[J]. Electronics, 2022, 11(9): 1393.
[15] WANG Si-hua, CHEN Ming-zhe, YIN Chang-chuan, et al. Federated learning for task and resource allocation in wireless high-altitude balloon networks[J]. IEEE Internet of Things Journal, 2021, 8(24): 17460-17475.
[16] CHENG Ke-wei, FAN Tao, JIN Yi-lun, et al. Secureboost: a lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98.
[17] ZHU Hang-yu, JIN Yao-chu. Multi-objective evolutionary federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1310-1322.
[18] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]∥SINGH A, ZHU J. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Brookline: Microtome Publishing, 2017: 1273-1282.
[19] GELFAND A E. Gibbs sampling[J]. Journal of the American Statistical Association, 2000, 95(452): 1300-1304.
[20] MCFADDEN D. The measurement of urban travel demand[J]. Journal of Public Economics, 1974, 3(4): 303-328.
[21] HENSHER D A, GREENE W H. The mixed logit model: the state of practice[J]. Transportation, 2003, 30: 133-176.
[22] SONG Xiang. Personalization of future urban mobility[D]. Cambridge: Massachusetts Institute of Technology, 2018.
[23] MCFADDEN D, TRAIN K. Mixed MNL models for discrete response[J]. Journal of Applied Econometrics, 2000, 15(5): 447-470.
[24] TRAIN K. Mixed logit with a flexible mixing distribution[J]. Journal of Choice Modelling, 2016, 19: 40-53.
[25] LEE L F. Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results[J]. Journal of Econometrics, 1997, 82(1): 1-35.
[26] BANSAL P, KRUEGER R, BIERLAIRE M, et al. Bayesian estimation of mixed multinomial logit models: advances and simulation-based evaluations[J]. Transportation Research Part B: Methodological, 2020, 131: 124-142.
[27] CHIB S, GREENBERG E. Understanding the metropolis-Hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
[28] DANAF M, BECKER F, SONG Xiang, et al. Online discrete choice models: applications in personalized recommendations[J]. Decision Support Systems, 2019, 119: 35-45.
[29] BEN-AKIVA M, MCFADDEN D, TRAIN K. Foundations of stated preference elicitation: consumer behavior and choice-based conjoint analysis[J]. Foundations and Trends in Econometrics, 2019, 10(1/2): 1-144.
[30] DINH C T, TRAN N H, NGUYEN M N, et al. Federated learning over wireless networks: convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 398-409.

相似文献/References:

[1]杨临涧,赵祥模,贺冰花,等.随机用户均衡交通分配问题的蚁群优化算法[J].交通运输工程学报,2018,18(03):189.
 YANG Lin-jian,ZHAO Xiang-mo,HE Bing-hua,et al.An ant colony optimization algorithm of stochastic user equilibrium traffic assignment problem[J].Journal of Traffic and Transportation Engineering,2018,18(05):189.
[2]吴超仲,吴浩然,吕能超.人机共驾智能汽车的控制权切换与安全性综述[J].交通运输工程学报,2018,18(06):131.
 WU Chao-zhong,WU Hao-ran,LYU Neng-chao.Review of control switch and safety of human-computerdriving intelligent vehicle[J].Journal of Traffic and Transportation Engineering,2018,18(05):131.
[3]陈小波,陈 程,陈 蕾,等.基于改进低秩矩阵补全的交通量数据缺失值插补方法[J].交通运输工程学报,2019,19(05):180.
 CHEN Xiao-bo,CHEN Cheng,CHEN Lei,et al.Interpolation method of traffic volume missing data based on improved low-rank matrix completion[J].Journal of Traffic and Transportation Engineering,2019,19(05):180.
[4]唐 立,卿三东,徐志刚,等.自动驾驶公众接受度研究综述[J].交通运输工程学报,2020,20(02):131.[doi:10.19818/j.cnki.1671-1637.2020.02.011]
 TANG Li,QING San-dong,XU Zhi-gang,et al.Research review on public acceptance of autonomous driving[J].Journal of Traffic and Transportation Engineering,2020,20(05):131.[doi:10.19818/j.cnki.1671-1637.2020.02.011]
[5]陈 君,田朝军,赵清梅,等.基于时空行为规律挖掘的公交乘客分类方法[J].交通运输工程学报,2021,21(05):274.[doi:10.19818/j.cnki.1671-1637.2021.05.023]
 CEHN Jun,TIAN Chao-jun,ZHAO Qing-mei,et al.Bus passenger classification method based on spatial and temporal behavior regularity mining[J].Journal of Traffic and Transportation Engineering,2021,21(05):274.[doi:10.19818/j.cnki.1671-1637.2021.05.023]
[6]张 毅,裴华鑫,姚丹亚.车路协同环境下车辆群体协同决策研究综述[J].交通运输工程学报,2022,22(03):1.[doi:10.19818/j.cnki.1671-1637.2022.03.001]
 ZHANG Yi,PEI Hua-xin,YAO Dan-ya.Research review on cooperative decision-making for vehicle swarms in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(05):1.[doi:10.19818/j.cnki.1671-1637.2022.03.001]
[7]上官伟,李 鑫,柴琳果,等.车路协同环境下混合交通群体智能仿真与测试研究综述[J].交通运输工程学报,2022,22(03):19.[doi:10.19818/j.cnki.1671-1637.2022.03.002]
 SHANGGUAN Wei,LI Xin,CHAI Lin-guo,et al.Research review on simulation and test of mixed traffic swarm in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(05):19.[doi:10.19818/j.cnki.1671-1637.2022.03.002]
[8]李瑞敏,戴晶辰.自动驾驶影响下的出行行为研究综述[J].交通运输工程学报,2022,22(03):41.[doi:10.19818/j.cnki.1671-1637.2022.03.003]
 LI Rui-min,DAI Jing-chen.Review on impact of autonomous driving on travel behaviors[J].Journal of Traffic and Transportation Engineering,2022,22(05):41.[doi:10.19818/j.cnki.1671-1637.2022.03.003]
[9]上官伟,庞晓宇,李秋艳,等.车路协同环境下群体车辆诱导与协同运行方法[J].交通运输工程学报,2022,22(03):68.[doi:10.19818/j.cnki.1671-1637.2022.03.005]
 SHANGGUAN Wei,PANG Xiao-yu,LI Qiu-yan,et al.Guidance and cooperative operation method for group vehicles in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(05):68.[doi:10.19818/j.cnki.1671-1637.2022.03.005]
[10]曲 栩,甘 锐,安博成,等.基于广义时空图卷积网络的交通群体运动态势预测[J].交通运输工程学报,2022,22(03):79.[doi:10.19818/j.cnki.1671-1637.2022.03.006]
 QU Xu,GAN Rui,AN Bo-cheng,et al.Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J].Journal of Traffic and Transportation Engineering,2022,22(05):79.[doi:10.19818/j.cnki.1671-1637.2022.03.006]

备注/Memo

备注/Memo:
收稿日期:2023-03-27
基金项目:国家自然科学基金项目(62002398,41901188); 国家重点研发计划(2020YFB1600400); 广东省基础与应用基础研究基金项目(2023A1515012895); 广州市科技计划项目(202206010056)
作者简介:由林麟(1987-),男,辽宁丹东人,中山大学副教授,工学博士,从事智能交通系统研究。
通讯作者:赵娟娟(1988-),女,河南焦作人,首都师范大学讲师,工学博士。
更新日期/Last Update: 2023-11-10