[1]郭延永,刘 佩,袁 泉,等.网联自动驾驶车辆道路交通安全研究综述[J].交通运输工程学报,2023,23(05):19-38.[doi:10.19818/j.cnki.1671-1637.2023.05.002]
 GUO Yan-yong,LIU Pei,YUAN Quan,et al.Review on research of road traffic safety of connected and automated vehicles[J].Journal of Traffic and Transportation Engineering,2023,23(05):19-38.[doi:10.19818/j.cnki.1671-1637.2023.05.002]
点击复制

网联自动驾驶车辆道路交通安全研究综述()
分享到:

《交通运输工程学报》[ISSN:1671-1637/CN:61-1369/U]

卷:
第23卷
期数:
2023年05期
页码:
19-38
栏目:
综述
出版日期:
2023-11-10

文章信息/Info

Title:
Review on research of road traffic safety of connected and automated vehicles
文章编号:
1671-1637(2023)05-0019-20
作者:
郭延永1刘 佩1袁 泉2刘 攀1徐 进3张 晖4
(1.东南大学 交通学院,江苏 南京 211189; 2.清华大学 车辆与运载学院,北京 100084; 3.重庆交通大学 交通运输学院,重庆 400074; 4.武汉理工大学 智能交通系统研究中心,湖北 武汉 430063)
Author(s):
GUO Yan-yong1 LIU Pei1 YUAN Quan2 LIU Pan1 XU Jin3 ZHANG Hui4
(1. School of Transportation, Southeast University, Nanjing 211189, Jiangsu, China; 2. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 3. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 4. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, Hubei, China)
关键词:
智能交通 道路交通安全 网联自动驾驶车辆 文献计量统计 科学知识图谱 可视化分析
Keywords:
intelligent transportation road traffic safety connected and automated vehicle bibliometric statistic map of scientific knowledge visual analysis
分类号:
U491.3
DOI:
10.19818/j.cnki.1671-1637.2023.05.002
文献标志码:
A
摘要:
为全面了解网联自动驾驶交通安全领域的研究进展,利用文献计量方法通过Web of Science核心数据库对Connected and Automated(Autonomous)Vehicles、Connected(Autonomous)Vehicles、Traffic Safety(Accident, Crash, Collision, Conflict)等关键词进行检索,共获取2010至2021年2 130篇相关文献,涵盖5 474位作者和7 017个关键词; 利用科学知识图谱对网联自动驾驶道路交通安全研究发展历程、研究归属地、研究主题与内容、研究热点等进行分析总结和可视化解析; 通过研究主题和热点的分析指出未来研究方向。研究结果表明:网联自动驾驶道路交通安全研究经历了起步阶段、缓慢增长阶段和快速发展阶段; 美国和中国是当今世界对网联自动驾驶道路交通安全领域贡献最大的2个研究主体; 研究主题主要围绕宏微观交通流、交通系统影响(交通出行、交通环境、交通安全)、车辆安全避障与路径规划、交通安全评价等展开,研究热点重点围绕网联自动驾驶交通控制与系统优化、新型混合交通流交通安全分析、微观行为建模与仿真安全评估等; 未来研究需重视由单车安全转向交通流事故风险传播研究,突破智能网联车队群体决策与编队控制技术,构建虚拟现实下智能网联数据化仿真环境与深度测试平台,挖掘网联自动驾驶人机共驾情境下驾驶人接管绩效评价体系,从而进行精细化的事故风险致因分析、交通安全建模与评估以及事故风险防控策略与算法研究。
Abstract:
To comprehensively understand the research progress in the field of traffic safety concerning connected and automated vehicles(CAVs), a bibliometric method was used to retrieve key words, such as connected and automated(autonomous)vehicles, connected(autonomous)vehicles, and traffic safety(accident, crash, collision, conflict)through the Web of Science core database. A total of 2 130 relevant publications spanning from 2010 to 2021 were retrieved. These publications encompassed contributions from 5 474 authors and addressed 7 017 key words. A map of scientific knowledge was employed to analyze, summarize, and visual elucidate the developmental trajectory, research affiliations, research themes and contents, and research focal points of investigations in the realm of road traffic safety for CAVs. By scrutinizing the research themes and focal points, forthcoming research directions were delineated. Analysis results show that the study of road traffic safety for CAVs has undergone stages of inception, gradual progression, and rapid expansion. Presently, the United States and China are the foremost contributors to research on the road traffic safety for CAVs. Research themes primarily focus on the macro and micro traffic flow, traffic system impacts(travel, traffic environment, and traffic safety), vehicle safety and obstacle avoidance, route planning, and traffic safety assessment. Research focal points encompass the CAV traffic control, system optimization, new hybrid traffic flow safety analysis, micro-behavior modeling, and simulation-based safety evaluation. Future research should pivot towards a transition from the single-vehicle safety to the traffic flow accident risk propagation. This shift calls for breakthroughs in intelligent connected fleet decision-making and formation control technology. Additionally, there is a need to establish a virtual reality-based intelligent connected data-driven simulation environment, coupled with an in-depth testing platform. These advancements will facilitate an assessment system of driver takeover performance in the context of CAV man-machine co-driving scenarios. Ultimately, this will enable a refined analysis on the accident risk causation, traffic safety modeling and assessment, as well as the development of strategies and algorithms for the accident risk prevention and control. 6 tabs, 11 figs, 120 refs.

参考文献/References:

[1] 张亚丽.世界卫生组织发布《2018年全球道路安全现状报告》[J].中华灾害救援医学,2019,DOI:CNKI:SUN:JYZH.0.2019-02-015.
ZHANG Ya-li. World health organization releases 2018 global status report on road safety[J]. Chinese Journal of Disaster Medicine, 2019, DOI:CNKI:SUN:JYZH.0. 2019-02-015.(in Chinese)
[2] 李克强,戴一凡,李升波,等.智能网联汽车(ICV)技术的发展现状及趋势[J].汽车安全与节能学报,2017,8(1):1-14.
LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14.(in Chinese)
[3] 张 行,孙 航.GB/T 40429—2021《汽车驾驶自动化分级》分析[J].中国汽车,2022(5):3-5,7.
ZHANG Xing, SUN Hang. Analysis on taxonomy of driving automation for vehicles[J]. China Auto, 2022(5): 3-5, 7.(in Chinese)
[4] NAUS G J L, VUGTS R P A, PLOEG J, et al. String-stable CACC design and experimental validation: a frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268-4279.
[5] MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(1): 296-305.
[6] PLOEG J, SHUKLA D P, VAN DE WOUW N, et al. Controller synthesis for string stability of vehicle platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 854-865.
[7] DRESNER K, STONE P. A multiagent approach to autonomous intersection management[J]. Journal of Artificial Intelligence Research, 2008, 31: 591-656.
[8] FENG Y, HEAD K L, KHOSHMAGHAM S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 460-473.
[9] GULER S I, MENENDEZ M, MEIER L. Using connected vehicle technology to improve the efficiency of intersections[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 121-131.
[10] GOODALL N J, SMITH B L, PARK B. Traffic signal control with connected vehicles[J]. Transportation Research Record, 2013( 2381): 65-72.
[11] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2010, 368(1928): 4585-4605.
[12] RAJU N, FARAH H. Evolution of traffic microsimulation and its use for modeling connected and automated vehicles[J]. Journal of Advanced Transportation, 2021, DOI: 10.1155/2021/2444363.
[13] CAO Xuan-hao, TIAN Yan-tao, JI Xue-wu, et al. Fault-tolerant controller design for path following of the autonomous vehicle under the faults in braking actuators[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2530-2540.
[14] HANG Peng, CHEN Xin-bo, LUO Feng-mei. LPV/H-infinity controller design for path tracking of autonomous ground vehicles through four-wheel steering and direct yaw-moment control[J]. International Journal of Automotive Technology, 2019, 20(4): 679-691.
[15] CHENG Shuo, LI Liang, LIU Yong-gang, et al. Virtual fluid-flow-model-based lane-keeping integrated with collision avoidance control system design for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6232-6241.
[16] GONZALEZ D, PEREZ J, MILANES V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1135-1145.
[17] VAN BRUMMELEN J, O'BRIEN M, GRUYER D, et al. Autonomous vehicle perception: the technology of today and tomorrow[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 384-406.
[18] BATSCH F, KANARACHOS S, CHEAH M, et al. A taxonomy of validation strategies to ensure the safe operation of highly automated vehicles[J]. Journal of Intelligent Transportation Systems, 2021, 26(1): 14-33.
[19] BONNEFON J F, SHARIFF A, RAHWAN I. The social dilemma of autonomous vehicles[J]. Science, 2016, 352(6293): 1573-1576.
[20] LE V H, HARTOG J D, ZANNONE N. Security and privacy for innovative automotive applications: a survey[J]. Computer Communications, 2018, 132: 17-41.
[21] MILAKIS D, VAN AREM B, VAN WEE B. Policy and society related implications of automated driving: a review of literature and directions for future research[J]. Journal of Intelligent Transportation Systems, 2017, 21(4): 324-348.
[22] TEOH E R, KIDD D G. Rage against the machine? Google's self-driving cars versus human drivers[J]. Journal of Safety Research, 2017, 63: 57-60.
[23] PENMETSA P, SHEINIDASHTEGOL P, MUSAEV A, et al. Effects of the autonomous vehicle crashes on public perception of the technology[J]. IATSS Research, 2021, 45(4): 485-492.
[24] 黎冲森,王 耀.从蔚来ES8事故风波看自动驾驶的发展[J].汽车纵横,2021(9):8-13.
LI Chong-sen, WANG Yao. The development of autonomous driving from NIO ES8 accident[J]. Auto Review, 2021(9): 8-13.(in Chinese)
[25] PETTY K F, NOEIMI H, SANWAL K, et al. The freeway service patrol evaluation project: database support programs, and accessibility[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(2): 71-85.
[26] VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
[27] 程慧荣,张晓阳,孙 坦,等.基于Web of Science的本体研究论文定量分析[J].现代图书情报技术,2006(11):46-50.
CHENG Hui-rong, ZHANG Xiao-yang, SUN Tan, et al. A quantitative analysis of ontology research articles based on web of science[J]. Data Analysis and Knowledge Discovery, 2006(11): 46-50.(in Chinese)
[28] GLASER S, VANHOLME B, MAMMAR S, et al. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 589-606.
[29] REINA G, MILELLA A. FLane: an adaptive fuzzy logic lane tracking system for driver assistance[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(2): 1-11.
[30] MARKVOLLRAT H, SCHLEICHER S, GELAU C. The influence of cruise control and adaptive cruise control on driving behaviour—a driving simulator study[J]. Accident Analysis and Prevention, 2011, 43(3): 1134-1139.
[31] MILANES V, LLORCA D F, VILLAGRA J, et al. Intelligent automatic overtaking system using vision for vehicle detection[J]. Expert Systems with Applications, 2012, 39(3): 3362-3373.
[32] FAJARDO D, AU T C, WALLER S T, et al. Automated intersection control: performance of future innovation versus current traffic signal control[J]. Transportation Research Record, 2011(2259): 223-232.
[33] VASIRANI M, OSSOWSKI S. Learning and coordination for autonomous intersection control[J]. Applied Artificial Intelligence, 2011, 25(3): 193-216.
[34] FURDA A, VLACIC L. Enabling safe autonomous driving in real-world city traffic using multiple criteria decision making[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3(1): 4-17.
[35] VERES S M, MOLNAR L, LINCOLN N K, et al. Autonomous vehicle control systems—a review of decision making[J]. Journal of Systems and Control Engineering, 2011, 225(2): 155-195.
[36] MILANES V, GONZALEZ C, NARANJO J E, et al. Electro-hydraulic braking system for autonomous vehicles[J]. International Journal of Automotive Technology, 2010, 11(1): 89-95.
[37] KIM E, KIM J, SUNWOO M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics[J]. International Journal of Automotive Technology, 2014, 15(7): 1155-1164.
[38] KAMAL M A S, IMURA J, HAYAKAWA T, et al. Smart driving of a vehicle using model predictive control for improving traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 878-888.
[39] LIN C F, JUANG J C, LI K R. Active collision avoidance system for steering control of autonomous vehicles[J]. IET Intelligent Transport Systems, 2014, 8(6): 550-557.
[40] XU Li-jian, WANG Le-yi, YIN G, et al. Communication information structures and contents for enhanced safety of highway vehicle platoons[J]. IEEE Transactions on Vehicular Technology, 2014, 63(9): 4206-4220.
[41] FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181.
[42] LEVIN M W, BOYLES S D. Effects of autonomous vehicle ownership on trip, mode, and route choice[J]. Transportation Research Record, 2015(2493): 29-38.
[43] GHIASI A, HUSSAIN O, QIAN Z S, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106: 266-292.
[44] BAGLOEE S A, SARVI M, PATRIKSSON M, et al. A mixed user-equilibrium and system-optimal traffic flow for connected vehicles stated as a complementarity problem[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(7): 562-580.
[45] PETIT J, SHLADOVER S E. Potential cyberattacks on automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(2): 546-556.
[46] PARKINSON S, WARD P, WILSON K, et al. Cyber threats facing autonomous and connected vehicles: future challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 2898-2915.
[47] HUANG Zi-chao, CHU Duan-feng, WU Chao-zhong, et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 959-974.
[48] YANG Jun-ru, PENG Wei-feng, SUN Chuan. A learning control method of automated vehicle platoon at straight path with DDPG-based PID[J]. Electronics, 2021, DOI: 10.3390/electronics10212580.
[49] GUNTER G, GLOUDEMANS D, STERN R E, et al. Are commercially implemented adaptive cruise control systems string stable?[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6992-7003.
[50] JIANG Xiao-bei, WANG Wu-hong, BENGLER K, et al. Analysis of drivers' performance in response to potential collision with pedestrians at urban crosswalks[J]. IET Intelligent Transport Systems, 2017, 11(9): 546-552.
[51] HE Ying, ZHAO Nan, YIN Hong-xi. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2017, 67(1): 44-55.
[52] CAI Xiu-zhang, GIALLORENZO M, SARABANDI K. Machine learning-based target classification for MMW radar in autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(4): 678-689.
[53] DEB S, STRAWDERMAN L, CARRUTH D W, et al. Development and validation of a questionnaire to assess pedestrian receptivity toward fully autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2017, 84: 178-195.
[54] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.
[55] Hoedemaeker D M. Driving with intelligent vehicles: driving behaviour with adaptive cruise control and the acceptance by individual drivers[D]. Delft: Delft University of Technology, 1999.
[56] GIRARD A R, DE SOUSA J B, MISENER J A, et al. A control architecture for integrated cooperative cruise control and collision warning systems[C]∥IEEE. Proceedings of the 40th IEEE Conference on Decision and Control. New York: IEEE, 2001: 1491-1496.
[57] VAN AREM B, VAN DRIEL C J G, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436.
[58] SHLADOVER S E, SU D Y, LU X Y. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012(2324): 63-70.
[59] USMAN G,KUNWAR F. Autonomous vehicle overtaking-an online solution[C]∥IEEE. 2009 IEEE International Conference on Automation and Logistics. New York: IEEE, 2009: 596-601.
[60] LIU Kai, GONG Jian-wei, KURT A, et al. Dynamic modeling and control of high-speed automated vehicles for lane change maneuver[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 329-339.
[61] WANG Hao-ran, LAI Jin-tao, ZHANG Xian-hong, et al. Make space to change lane: a cooperative adaptive cruise control lane change controller[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103847.
[62] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163.
[63] CHEN Dan-jue, AHN S, CHITTURI M, et al. Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221.
[64] FAGNANT D J, KOCKELMAN K M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios[J]. Transportation Research Part C: Emerging Technologies, 2014, 40: 1-13.
[65] KYRIAKIDIS M, HAPPEE R, DE WINTER J C F. Public opinion on automated driving: results of an international questionnaire among 5 000 respondents[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 32: 127-140.
[66] HABOUCHA C J, ISHAQ R, SHIFTAN Y. User preferences regarding autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2017, 78: 37-49.
[67] PADEN B, CAP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55.
[68] KATRAKAZAS C, QUDDUS M, CHEN W H, et al. Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 416-442.
[69] WANG Chen, XIE Yuan-chang, HUANG He-lai, et al. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling[J]. Accident Analysis and Prevention, 2021, 157: 106157.
[70] ASLJUNG D, NILSSON J, FREDRIKSSON J. Using extreme value theory for vehicle level safety validation and implications for autonomous vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(4): 288-297.
[71] FERNANDES P, NUNES U. Multiplatooning leaders positioning and cooperative behavior algorithms of communicant automated vehicles for high traffic capacity[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1172-1187.
[72] WANG Huan-jie, YUAN Shi-hua, GUO Meng-yu, et al. A deep reinforcement learning-based approach for autonomous driving in highway on-ramp merge[J]. Journal of Automobile Engineering, 2021, 235(10/11): 2726-2739.
[73] WANG Xue-song, QIN Ding-ming, CAFISO S, et al. Operational design domain of autonomous vehicles at skewed intersection[J]. Accident Analysis and Prevention, 2021, 159: 106241.
[74] CHEN Si-kai, DONG Ji-qian, HA P, et al. Graph neural network and reinforcement learning for multi-agent cooperative control of connected autonomous vehicles[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(7): 838-857.
[75] FU Xing, NIE Qi-fan, LIU Jun, et al. Constructing spatiotemporal driving volatility profiles for connected and automated vehicles in existing highway networks[J]. Journal of Intelligent Transportation Systems, 2022, 26(5): 1-14.
[76] DESIRAJU D, CHANTEM T, HEASLIP K. Minimizing the disruption of traffic flow of automated vehicles during lane changes[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1249-1258.
[77] RAHMAN M S, ABDEL-ATY M. Longitudinal safety evaluation of connected vehicles' platooning on expressways[J]. Accident Analysis and Prevention, 2018, 117: 381-391.
[78] ZHOU Fang, LI Xiao-peng, MA Jia-qi. Parsimonious shooting heuristic for trajectory design of connected automated traffic Part Ⅰ: theoretical analysis with generalized time geography[J]. Transportation Research Part B: Methodological, 2017, 95: 394-420.
[79] MA Jia-qi, LI Xiao-peng, ZHOU Fang, et al. Parsimonious shooting heuristic for trajectory design of connected automated traffic Part Ⅱ: computational issues and optimization[J]. Transportation Research Part B: Methodological, 2017, 95: 421-441.
[80] LEE J, PARK B B, MALAKORN K, et al. Sustainability assessments of cooperative vehicle intersection control at an urban corridor[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 193-206.
[81] JIANG Yang-sheng, ZHAO Bin, LIU Meng, et al. A two-level model for traffic signal timing and trajectories planning of multiple CAVs in a random environment[J]. Journal of Advanced Transportation, 2021, 2021: 1-13.
[82] GUO Qiang-qiang, LI Li, BAN X G. Urban traffic signal control with connected and automated vehicles: a survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 313-334.
[83] KATO S, TSUGAWA S, TOKUDA K, et al. Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(3): 155-161.
[84] GUO Yi, MA Jia-qi. DRL-TP3: a learning and control framework for signalized intersections with mixed connected automated traffic[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103416.
[85] KHAITAN S, LIN Q, DOLAN J M. Safe planning and control under uncertainty for self-driving[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 9826-9837.
[86] DEGUCHI D, SHIRASUNA M, DOMAN K, et al. Intelligent traffic sign detector: adaptive learning based on online gathering of training samples[C]∥IEEE. 2011 IEEE Intelligent Vehicles Symposium(IV). New York: IEEE, 2011: 72-77.
[87] WANG Jing-hua, ZHANG Zhao, LU Guang-quan. A Bayesian inference based adaptive lane change prediction model[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103363.
[88] GRYMIN D J, NEAS C B, FARHOOD M. A hierarchical approach for primitive-based motion planning and control of autonomous vehicles[J]. Robotics and Autonomous Systems, 2014, 62(2): 214-228.
[89] XING Yang, LYU Chen, CAO Dong-pu, et al. Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103288.
[90] NAGAHAMA A, SAITO T, WADA T, et al. Autonomous driving learning preference of collision avoidance maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(9): 5624-5634.
[91] YE Lan-hang, YAMAMOTO T, MORIKAWA T. Heterogeneous traffic flow dynamics under various penetration rates of connected and autonomous vehicle[C]∥IEEE. 21st IEEE International Conference on Intelligent Transportation Systems(ITSC). New York: IEEE, 2018: 555-559.
[92] RAD S R, FARAH H, TAALE H, et al. The impact of a dedicated lane for connected and automated vehicles on the behaviour of drivers of manual vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82: 141-153.
[93] ONIEVA E, MILANES V, VILLAGRA J, et al. Genetic optimization of a vehicle fuzzy decision system for intersections[J]. Expert Systems with Applications, 2012, 39(18): 13148-13157.
[94] KHAN S M, CHOWDHURY M. Situation-aware left-turning connected and automated vehicle operation at signalized intersections[J]. IEEE Internet of Things Journal, 2021, 8(16): 13077-13094.
[95] ARVIN R, KHATTAK A J, KAMRANI M, et al. Safety evaluation of connected and automated vehicles in mixed traffic with conventional vehicles at intersections[J]. Journal of Intelligent Transportation Systems, 2020, 25(2): 170-187.
[96] DIXIT V V, CHAND S, NAIR D J. Autonomous vehicles: disengagements, accidents and reaction times[J]. PlosOne, 2016, 11(12): 168054.
[97] CELINA K, FLORIAN K, TOBIAS V. Consequences of autonomous vehicles: ambivalent expectations and their impact on acceptance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81: 282-294.
[98] NADAFIANSHAHAMABADI R, TAYARANI M, ROWANGOULD G. A closer look at urban development under the emergence of autonomous vehicles: traffic, land use and air quality impacts[J]. Journal of Transport Geography, 2021, 94: 103113.
[99] SERAJ M, LI Jiang-chen, QIU Zhi-jun. Modeling microscopic car-following strategy of mixed traffic to identify optimal platoon configurations for multiobjective decision-making[J]. Journal of Advanced Transportation, 2018, DOI: 10.1155/2018/7835010.
[100] VIRDI N, GRZYBOWSKA H, WALLER S T, et al. A safety assessment of mixed fleets with connected and autonomous vehicles using the surrogate safety assessment module[J]. Accident Analysis and Prevention, 2019, 131: 95-111.
[101] CHEN Liang, ZHANG Yun, LI Kun, et al. Car-following model of connected and autonomous vehicles considering both average headway and electronic throttle angle[J]. Modern Physics Letters B, 2021, 35(15): 2150257.
[102] YAO Han-dong, LI Xiao-peng. Lane-change-aware connected automated vehicle trajectory optimization at a signalized intersection with multi-lane roads[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103182.
[103] RYAN C, MURPHY F, MULLINS M. End-to-end autonomous driving risk analysis: a behavioural anomaly detection approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1650-1662.
[104] MATTAS K, MAKRIDIS M, BOTZORIS G, et al. Fuzzy surrogate safety metrics for real-time assessment of rear-end collision risk. A study based on empirical observations[J]. Accident Analysis and Prevention, 2020, 148: 105794.
[105] KHASTGIR S, BIRRELL S, DHADYALLA G, et al. Development of a drive-in driver-in-the-loop fully immersive driving simulator for virtual validation of automotive systems[C]∥IEEE. 2015 IEEE 81st Vehicular Technology Conference(VTC Spring). New York: IEEE, 2015: 1-4.
[106] XING Yang, LYU Chen, MO Xiao-yu, et al. Toward safe and smart mobility: energy-aware deep learning for driving behavior analysis and prediction of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4267-4280.
[107] OSMAN O A, ISHAK S. Prediction of travel time estimation accuracy in connected vehicle environments[C]∥Springer. 2017 International Congress and Exhibition “ Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”. Berlin: Springer, 2017: 72-87.
[108] LI Yang, WANG Jian-qiang, WU Jian. Model calibration concerning risk coefficients of driving safety field model[J]. Journal of Central South University, 2017, 24(6): 1494-1502.
[109] WANG Hua, MENG Qiang, CHEN Shu-kai, et al. Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: a game-theoretic approach[J]. Transportation Research Part B: Methodological, 2021, 149: 322-346.
[110] PAPAKOSTOPOULOS V, NATHANAEL D, PORTOULI E, et al. Effect of external HMI for automated vehicles(AVs)on drivers' ability to infer the AV motion intention: a field experiment[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82: 32-42.
[111] CASNER S M, HUTCHINS E L, NORMAN D. The challenges of partially automated driving[J]. Communications of the ACM, 2016, 59(5): 70-77.
[112] ALREFAIE M T, SUMMERSKILL S, JACKON T W. In a heart beat: using driver's physiological changes to determine the quality of a takeover in highly automated vehicles[J]. Accident Analysis and Prevention, 2019, 131: 180-190.
[113] VOGELPOHL T, KÜHN M, HUMMEL T, et al. Asleep at the automated wheel—sleepiness and fatigue during highly automated driving[J]. Accident Analysis and Prevention, 2019, 126: 70-84.
[114] YOON S H, KIM Y W, JI Y G. The effects of takeover request modalities on highly automated car control transitions[J]. Accident Analysis and Prevention, 2019, 123: 150-158.
[115] BRANDENBURG S, CHUANG L. Take-over requests during highly automated driving: how should they be presented and under what conditions?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66: 214-225.
[116] ZEEB K, BUCHNER A, SCHRAUF M. What determines the take-over time? An integrated model approach of driver take-over after automated driving[J]. Accident Analysis and Prevention, 2015, 78: 212-221.
[117] SPORTILLO D, PALJIC A, OJEDA L. Get ready for automated driving using virtual reality[J]. Accident Analysis and Prevention, 2018, 118: 102-113.
[118] 郭延永,刘 攀,吴 瑶,等.基于冲突极值模型的非常规信号交叉口安全评价[J].中国公路学报,2022,35(1):85-92.
GUO Yan-yong, LIU Pan, WU Yao, et al. Safety evaluation of unconventional signalized intersection based on traffic conflict extreme model[J]. China Journal of Highway and Transport, 2022, 35(1): 85-92.(in Chinese)
[119] 郭延永,刘 攀,吴 瑶,等.考虑异质性的贝叶斯交通冲突模型[J].中国公路学报,2018,31(4):296-303.
GUO Yan-yong, LIU Pan, WU Yao, et al. Bayesian traffic conflict model accounting for heterogeneity[J]. China Journal of Highway and Transport, 2018, 31(4): 296-303.(in Chinese)
[120] 郭延永,刘 攀,吴 瑶,等.基于贝叶斯多元泊松-对数正态分布的交通冲突模型[J].中国公路学报,2018,31(1):101-109.
GUO Yan-yong, LIU Pan, WU Yao, et al. Traffic conflict model based on Bayesian multivariate Poisson-lognormal normal distribution[J]. China Journal of Highway and Transport, 2018, 31(1): 101-109.(in Chinese)

相似文献/References:

[1]杨临涧,赵祥模,贺冰花,等.随机用户均衡交通分配问题的蚁群优化算法[J].交通运输工程学报,2018,18(03):189.
 YANG Lin-jian,ZHAO Xiang-mo,HE Bing-hua,et al.An ant colony optimization algorithm of stochastic user equilibrium traffic assignment problem[J].Journal of Traffic and Transportation Engineering,2018,18(05):189.
[2]吴超仲,吴浩然,吕能超.人机共驾智能汽车的控制权切换与安全性综述[J].交通运输工程学报,2018,18(06):131.
 WU Chao-zhong,WU Hao-ran,LYU Neng-chao.Review of control switch and safety of human-computerdriving intelligent vehicle[J].Journal of Traffic and Transportation Engineering,2018,18(05):131.
[3]陈小波,陈 程,陈 蕾,等.基于改进低秩矩阵补全的交通量数据缺失值插补方法[J].交通运输工程学报,2019,19(05):180.
 CHEN Xiao-bo,CHEN Cheng,CHEN Lei,et al.Interpolation method of traffic volume missing data based on improved low-rank matrix completion[J].Journal of Traffic and Transportation Engineering,2019,19(05):180.
[4]唐 立,卿三东,徐志刚,等.自动驾驶公众接受度研究综述[J].交通运输工程学报,2020,20(02):131.[doi:10.19818/j.cnki.1671-1637.2020.02.011]
 TANG Li,QING San-dong,XU Zhi-gang,et al.Research review on public acceptance of autonomous driving[J].Journal of Traffic and Transportation Engineering,2020,20(05):131.[doi:10.19818/j.cnki.1671-1637.2020.02.011]
[5]陈 君,田朝军,赵清梅,等.基于时空行为规律挖掘的公交乘客分类方法[J].交通运输工程学报,2021,21(05):274.[doi:10.19818/j.cnki.1671-1637.2021.05.023]
 CEHN Jun,TIAN Chao-jun,ZHAO Qing-mei,et al.Bus passenger classification method based on spatial and temporal behavior regularity mining[J].Journal of Traffic and Transportation Engineering,2021,21(05):274.[doi:10.19818/j.cnki.1671-1637.2021.05.023]
[6]张 毅,裴华鑫,姚丹亚.车路协同环境下车辆群体协同决策研究综述[J].交通运输工程学报,2022,22(03):1.[doi:10.19818/j.cnki.1671-1637.2022.03.001]
 ZHANG Yi,PEI Hua-xin,YAO Dan-ya.Research review on cooperative decision-making for vehicle swarms in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(05):1.[doi:10.19818/j.cnki.1671-1637.2022.03.001]
[7]上官伟,李 鑫,柴琳果,等.车路协同环境下混合交通群体智能仿真与测试研究综述[J].交通运输工程学报,2022,22(03):19.[doi:10.19818/j.cnki.1671-1637.2022.03.002]
 SHANGGUAN Wei,LI Xin,CHAI Lin-guo,et al.Research review on simulation and test of mixed traffic swarm in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(05):19.[doi:10.19818/j.cnki.1671-1637.2022.03.002]
[8]李瑞敏,戴晶辰.自动驾驶影响下的出行行为研究综述[J].交通运输工程学报,2022,22(03):41.[doi:10.19818/j.cnki.1671-1637.2022.03.003]
 LI Rui-min,DAI Jing-chen.Review on impact of autonomous driving on travel behaviors[J].Journal of Traffic and Transportation Engineering,2022,22(05):41.[doi:10.19818/j.cnki.1671-1637.2022.03.003]
[9]上官伟,庞晓宇,李秋艳,等.车路协同环境下群体车辆诱导与协同运行方法[J].交通运输工程学报,2022,22(03):68.[doi:10.19818/j.cnki.1671-1637.2022.03.005]
 SHANGGUAN Wei,PANG Xiao-yu,LI Qiu-yan,et al.Guidance and cooperative operation method for group vehicles in vehicle-infrastructure cooperative environment[J].Journal of Traffic and Transportation Engineering,2022,22(05):68.[doi:10.19818/j.cnki.1671-1637.2022.03.005]
[10]曲 栩,甘 锐,安博成,等.基于广义时空图卷积网络的交通群体运动态势预测[J].交通运输工程学报,2022,22(03):79.[doi:10.19818/j.cnki.1671-1637.2022.03.006]
 QU Xu,GAN Rui,AN Bo-cheng,et al.Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J].Journal of Traffic and Transportation Engineering,2022,22(05):79.[doi:10.19818/j.cnki.1671-1637.2022.03.006]

备注/Memo

备注/Memo:
收稿日期:2023-03-21
基金项目:国家自然科学基金项目(52272343,51925801,52232012)
作者简介:郭延永(1985-),男,河北邢台人,东南大学教授,工学博士,从事交通冲突技术与自动驾驶安全理论研究。
通讯作者:刘 攀(1979-),男,江苏扬州人,东南大学教授,工学博士。
更新日期/Last Update: 2023-11-10